python之用Numpy和matplotlib画一个魔方

 更新时间:2021年08月30日 15:44:06   作者:薛定猫  
这篇文章主要介绍了如何用Numpy和matplotlib画一个魔方,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

瞎鼓捣系列~
Numpy + matplotlib 画一个魔方

前言

NumPy是Python科学计算的基本包。它是一个Python库,提供了多维数组对象、各种派生对象(如掩码数组和矩阵),以及用于对数组进行快速操作的各种例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本的统计运算,随机模拟等等。
github
官方文档

最近项目中有个码垛规划的需求,Numpy中的三维数组特别好用,就鼓捣了一下。
然后我看到桌子上两年前买的魔方,好久没玩儿过了。头脑一热,就想用Numpy画个魔方出来!

在这里插入图片描述

开搞!

这里选择使用Matplotlib作为可视化工具
Matplotlib GitHub
Matplotlib 官方文档

构建体素

为了制作魔方,主要用到Matplotlib中的一个函数voxels

voxels([x, y, z, ]/, filled, facecolors=None, edgecolors=None, **kwargs)
绘制一组填充体素
所有体素在坐标轴上绘制为1x1x1立方体,filled[0, 0, 0]的lower corner位于原点。被遮挡的面不再绘制。

以3x3x3魔方为例:

import matplotlib.pyplot as plt
import numpy as np
# 准备一组体素坐标
n_voxels = np.ones((3, 3, 3), dtype=bool)
# 绘制
ax = plt.figure().add_subplot(projection='3d')
ax.voxels(n_voxels)
plt.show()

在这里插入图片描述

可以看到,虽然出现了3x3x3个体素,但是体素与体素之间的没有间隙,看起来不是很美观。

制作间隙效果

为了让体素与体素之间有间隙,可以对3x3x3的体素进行上采样,即构建一个5x5x5的体素,这样在每一个维度,让处于两个体素中间的体素不显示,即可产生间隙的效果。

size = np.array(n_voxels.shape) * 2
filled_2 = np.zeros(size - 1, dtype=n_voxels.dtype)
filled_2[::2, ::2, ::2] = n_voxels


ax = plt.figure().add_subplot(projection='3d')
ax.voxels(filled_2)
plt.show()

在这里插入图片描述

这样间隙有了,但是间隙太大了,此时可以使用voxels函数的可选参数[x, y, z]控制每一个voxel的顶点位置,进而控制间隙的大小

# 缩小间隙
# 构建voxels顶点控制网格
# x, y, z均为6x6x6的矩阵,为voxels的网格
# //2是为了,把索引范围从[0 1 2 3 4 5]转换为[0 0 1 1 2 2],这样x,y,z范围就回到了0~3
x, y, z = np.indices(np.array(filled_2.shape) + 1).astype(float) // 2   

x[1::2, :, :] += 0.95
y[:, 1::2, :] += 0.95
z[:, :, 1::2] += 0.95

在这里插入图片描述

这样间隙就看起来差不多了,接下来就是为魔方的六个面添加颜色了。

为每个面赋不同的颜色

由于只能给每个体素整体一个颜色,不能对一个体素的不同面指定不同的颜色,所以为了实现六个面不同颜色,只能将3x3x3的矩阵改为5x5x5,将最外边的那一层体素厚度设小一点,近似于面,然后赋颜色。

import matplotlib.pyplot as plt
import numpy as np

# 准备一些坐标
n_voxels = np.ones((5, 5, 5), dtype=bool)

# 生成间隙
size = np.array(n_voxels.shape) * 2
filled_2 = np.zeros(size - 1, dtype=n_voxels.dtype)
filled_2[::2, ::2, ::2] = n_voxels

# 缩小间隙
# 构建voxels顶点控制网格
# x, y, z均为6x6x8的矩阵,为voxels的网格,3x3x4个小方块,共有6x6x8个顶点。
# 这里//2是精髓,把索引范围从[0 1 2 3 4 5]转换为[0 0 1 1 2 2],这样就可以单独设立每个方块的顶点范围
x, y, z = np.indices(np.array(filled_2.shape) + 1).astype(float) //2  # 3x6x6x8,其中x,y,z均为6x6x8

x[1::2, :, :] += 0.95
y[:, 1::2, :] += 0.95
z[:, :, 1::2] += 0.95
# 修改最外面的体素的厚度,作为六个面来使用
x[0, :, :] += 0.94
y[:, 0, :] += 0.94
z[:, :, 0] += 0.94

x[-1, :, :] -= 0.94
y[:, -1, :] -= 0.94
z[:, :, -1] -= 0.94
# 去除边角料
filled_2[0, 0, :] = 0
filled_2[0, -1, :] = 0
filled_2[-1, 0, :] = 0
filled_2[-1, -1, :] = 0

filled_2[:, 0, 0] = 0
filled_2[:, 0, -1] = 0
filled_2[:, -1, 0] = 0
filled_2[:, -1, -1] = 0

filled_2[0, :, 0] = 0
filled_2[0, :, -1] = 0
filled_2[-1, :, 0] = 0
filled_2[-1, :, -1] = 0

在这里插入图片描述

然后就是给六个面赋不同的颜色了。

六个方向表示:上(up)、下(down)、左(left)、右(right)、前(front)、后(back)
六种颜色表示:黄色(yellow)、白色(white)、橙色(orange)、红色(red)、蓝色(blue)、绿色(green)
初始的魔方组成形式为:上黄,下白,左橙,右红,前蓝,后绿。

参考:颜色大全https://www.5tu.cn/colors/yansebiao.html

# 给魔方六个面赋予不同的颜色
colors = np.array(['#ffd400', "#fffffb", "#f47920", "#d71345", "#145b7d", "#45b97c"])
facecolors = np.full(filled_2.shape, '#77787b')  # 设一个灰色的基调
facecolors[:, :, -1] = colors[0]
facecolors[:, :, 0] = colors[1]
facecolors[:, 0, :] = colors[2]
facecolors[:, -1, :] = colors[3]
facecolors[0, :, :] = colors[4]
facecolors[-1, :, :] = colors[5]

在这里插入图片描述

完整代码

完整 代码如下:

# -*- coding: utf-8 -*-
# @Time : DATE:2021/8/29
# @Author : yan
# @Email : 1792659158@qq.com
# @File : blogDemo.py

import matplotlib.pyplot as plt
import numpy as np


def generate_rubik_cube(nx, ny, nz):
    """
    根据输入生成指定尺寸的魔方
    :param nx:
    :param ny:
    :param nz:
    :return:
    """
    # 准备一些坐标
    n_voxels = np.ones((nx + 2, ny + 2, nz + 2), dtype=bool)

    # 生成间隙
    size = np.array(n_voxels.shape) * 2
    filled_2 = np.zeros(size - 1, dtype=n_voxels.dtype)
    filled_2[::2, ::2, ::2] = n_voxels

    # 缩小间隙
    # 构建voxels顶点控制网格
    # x, y, z均为6x6x8的矩阵,为voxels的网格,3x3x4个小方块,共有6x6x8个顶点。
    # 这里//2是精髓,把索引范围从[0 1 2 3 4 5]转换为[0 0 1 1 2 2],这样就可以单独设立每个方块的顶点范围
    x, y, z = np.indices(np.array(filled_2.shape) + 1).astype(float) // 2  # 3x6x6x8,其中x,y,z均为6x6x8

    x[1::2, :, :] += 0.95
    y[:, 1::2, :] += 0.95
    z[:, :, 1::2] += 0.95

    # 修改最外面的面
    x[0, :, :] += 0.94
    y[:, 0, :] += 0.94
    z[:, :, 0] += 0.94

    x[-1, :, :] -= 0.94
    y[:, -1, :] -= 0.94
    z[:, :, -1] -= 0.94

    # 去除边角料
    filled_2[0, 0, :] = 0
    filled_2[0, -1, :] = 0
    filled_2[-1, 0, :] = 0
    filled_2[-1, -1, :] = 0

    filled_2[:, 0, 0] = 0
    filled_2[:, 0, -1] = 0
    filled_2[:, -1, 0] = 0
    filled_2[:, -1, -1] = 0

    filled_2[0, :, 0] = 0
    filled_2[0, :, -1] = 0
    filled_2[-1, :, 0] = 0
    filled_2[-1, :, -1] = 0

    # 给魔方六个面赋予不同的颜色
    colors = np.array(['#ffd400', "#fffffb", "#f47920", "#d71345", "#145b7d", "#45b97c"])
    facecolors = np.full(filled_2.shape, '#77787b')  # 设一个灰色的基调
    # facecolors = np.zeros(filled_2.shape, dtype='U7')
    facecolors[:, :, -1] = colors[0]	# 上黄
    facecolors[:, :, 0] = colors[1]	    # 下白
    facecolors[:, 0, :] = colors[2]  	# 左橙
    facecolors[:, -1, :] = colors[3]	# 右红
    facecolors[0, :, :] = colors[4]	    # 前蓝
    facecolors[-1, :, :] = colors[5]	# 后绿

    ax = plt.figure().add_subplot(projection='3d')
    ax.voxels(x, y, z, filled_2, facecolors=facecolors)
    plt.show()


if __name__ == '__main__':
    generate_rubik_cube(3, 3, 3)

可根据输入生成不同尺寸的魔方:
4x4x4:

在这里插入图片描述

6x6x6

在这里插入图片描述

甚至是4x4x6,不过这就不是咱平时玩儿的魔方了~

在这里插入图片描述

到此这篇关于python之用Numpy和matplotlib画一个魔方的文章就介绍到这了,更多相关Numpy matplotlib画魔方内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  •  Python列表的切片取值详解

     Python列表的切片取值详解

    这篇文章主要介绍了 Python列表的切片取值详解,文章通过围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-09-09
  • python3 dict ndarray 存成json,并保留原数据精度的实例

    python3 dict ndarray 存成json,并保留原数据精度的实例

    今天小编就为大家分享一篇python3 dict ndarray 存成json,并保留原数据精度的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • django中path和url函数的具体使用

    django中path和url函数的具体使用

    本文主要介绍了django中path和url函数的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • Python批量改变图片名字的示例代码

    Python批量改变图片名字的示例代码

    本文主要介绍了Python批量改变图片名字的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • 如何将Yolov5的detect.py修改为可以直接调用的函数详解

    如何将Yolov5的detect.py修改为可以直接调用的函数详解

    YOLOv4还没有退热,YOLOv5已经发布,下面这篇文章主要给大家介绍了关于如何将Yolov5的detect.py修改为可以直接调用的函数的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2022-04-04
  • Python实现的matplotlib动画演示之细胞自动机

    Python实现的matplotlib动画演示之细胞自动机

    这篇文章主要介绍了Python实现的matplotlib动画演示之细胞自动机,用python来模拟,首先尝试表示Beacon,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下
    2022-04-04
  • matplotlib 三维图表绘制方法简介

    matplotlib 三维图表绘制方法简介

    这篇文章主要介绍了matplotlib 三维图表绘制方法简介,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-09-09
  • python 对key为时间的dict排序方法

    python 对key为时间的dict排序方法

    今天小编就为大家分享一篇python 对key为时间的dict排序方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • Python 深入了解opencv图像分割算法

    Python 深入了解opencv图像分割算法

    本文主要介绍了Python通过opencv实现图像分割的详细过程与代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-11-11
  • Python通过pymysql调用MySQL进行增删改移查

    Python通过pymysql调用MySQL进行增删改移查

    这篇文章主要介绍了Python通过pymysql调用MySQL,从而实现数据的增删改移查功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2021-12-12

最新评论