OpenCV半小时掌握基本操作之傅里叶变换

 更新时间:2021年09月01日 15:12:15   作者:我是小白呀  
这篇文章主要介绍了OpenCV基本操作之傅里叶变换,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. 

在这里插入图片描述

高频 vs 低频

高频 vs 低频:

  • 高频: 变换剧烈的灰度分量, 例如边界
  • 低频: 变换缓慢的灰度分量, 例如一片大海

在这里插入图片描述

滤波:

  • 低通滤波器: 只保留低频, 会使得图像模糊
  • 高通滤波器: 只保留高频, 会使得图像细节增强

傅里叶变换

傅里叶变化 (Fourier Transform) 是一种分析信号的方法. 傅里叶变化可分析信号的成分, 也可以用这些成分合成信号.

效果:

在这里插入图片描述

傅里叶变换:

在这里插入图片描述

傅里叶逆变换:

在这里插入图片描述

在 OpenCV 中实现傅里叶变换的函数是cv2.dft()cv2.idft()(傅里叶逆变化)

代码详解

输入转换

傅里叶变换支持的输入格式是np.float32, 所以我们需要先把图像转换到要求的格式.

代码实现:

import numpy as np
import cv2

# 读取图片, 并转换成灰度图
img = cv2.imread("Mona_Lisa.jpg", cv2.IMREAD_GRAYSCALE)
print(img.dtype)  # unit8数据类型

# 转换成np.float32
img_float32 = np.float32(img)
print(img_float32.dtype)  # float32数据类型

输出结果:

uint8
float32

傅里叶变换

格式:

cv2.dft(src, dst=None, flags=None, nonzeroRows=None)

参数:

  • src: 输入图像
  • dst: 输出图像, 默认为 None
  • flags: 转换标志 (5 种)
  • nonezeroRows: 要处理的 dst 行数, 默认为 None

在这里插入图片描述

返回值:

  • 实部和虚部 (双通道)
  • 实部: 代表所有的偶函数 (余弦函数) 的部分
  • 虚部: 代表所有的奇函数 (正弦函数) 的部分

代码实现:

# 傅里叶变换
dft = cv2.dft(img_float32, flags=cv2.DFT_COMPLEX_OUTPUT)

# 中心转换, 将低频挪到中心
dft_shift = np.fft.fftshift(dft)

获取幅度谱

幅度谱 (Magnitude Spectrum), 即从构成波形的频率侧面看过去, 每一个频率分量都会在侧面的投影, 如图:

在这里插入图片描述

通过```cv2.magnitude``我们可以极端二维矢量的幅值.

在这里插入图片描述

格式:

cv2.magnitude(x, y, magnitude=None)

参数:

  • x: 实部
  • y: 虚部

代码实现:

# 获取幅度谱, 映射到灰度空间 [0, 255]
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

# 幅度谱展示
combine = np.hstack((img, magnitude_spectrum.astype(np.uint8)))
cv2.imshow("combine", combine)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

傅里叶逆变换

格式:

cv2.idft(src, dst=None, flags=None, nonzeroRows=None)

参数:

  • src: 输入图像
  • dst: 输出图像, 默认为 None
  • flags: 转换标志 (5 种)
  • nonezeroRows: 要处理的 dst 行数, 默认为 None

返回值:

  • 实部和虚部 (双通道)
  • 实部: 代表所有的偶函数 (余弦函数) 的部分
  • 虚部: 代表所有的奇函数 (正弦函数) 的部分

代码实现:

# 获取中心位置
rows, cols = img.shape
crow, ccol = int(rows / 2), int(cols / 2)

# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1

# 傅里叶逆变换
fshidt = dft_shift * mask
f_ishift = np.fft.ifftshift(fshidt)
img_back = cv2.idft(f_ishift)

获取低频

import numpy as np
import cv2

# 读取图片, 并转换成灰度图
img = cv2.imread("Mona_Lisa.jpg", cv2.IMREAD_GRAYSCALE)
print(img.dtype)  # unit8数据类型

# 转换成np.float32
img_float32 = np.float32(img)
print(img_float32.dtype)  # float32数据类型

# 傅里叶变换
dft = cv2.dft(img_float32, flags=cv2.DFT_COMPLEX_OUTPUT)

# 中心转换, 将低频挪到中心
dft_shift = np.fft.fftshift(dft)

# 获取幅度谱
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

# 幅度谱展示
combine = np.hstack((img, magnitude_spectrum.astype(np.uint8)))
cv2.imshow("combine", combine)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 获取中心位置
rows, cols = img.shape
crow, ccol = int(rows / 2), int(cols / 2)

# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1
fshidt = dft_shift * mask
f_ishift = np.fft.ifftshift(fshidt)

# 傅里叶逆变换, 获取低频图像
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])

# 结果展示
img_back = 255 * cv2.normalize(img_back, None, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)  # 标准化
result = np.hstack((img, img_back.astype(np.uint8)))
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

在这里插入图片描述

获取高频

import numpy as np
import cv2

# 读取图片, 并转换成灰度图
img = cv2.imread("Mona_Lisa.jpg", cv2.IMREAD_GRAYSCALE)
print(img.dtype)  # unit8数据类型

# 转换成np.float32
img_float32 = np.float32(img)
print(img_float32.dtype)  # float32数据类型

# 傅里叶变换
dft = cv2.dft(img_float32, flags=cv2.DFT_COMPLEX_OUTPUT)

# 中心转换, 将低频挪到中心
dft_shift = np.fft.fftshift(dft)

# 获取幅度谱
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))

# 幅度谱展示
combine = np.hstack((img, magnitude_spectrum.astype(np.uint8)))
cv2.imshow("combine", combine)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 获取中心位置
rows, cols = img.shape
crow, ccol = int(rows / 2), int(cols / 2)

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 0
fshidt = dft_shift * mask
f_ishift = np.fft.ifftshift(fshidt)

# 傅里叶逆变换, 获取高频图像
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])

# 结果展示
img_back = 255 * cv2.normalize(img_back, None, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)  # 标准化
result = np.hstack((img, img_back.astype(np.uint8)))
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

在这里插入图片描述

到此这篇关于OpenCV半小时掌握基本操作之傅里叶变换的文章就介绍到这了,更多相关OpenCV傅里叶变换内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 基于Python实现录音功能的示例代码

    基于Python实现录音功能的示例代码

    今天我们来介绍一个好玩且实用的东西,我们使用python来实现一个录音的功能。文中的示例代码简洁易懂,感兴趣的小伙伴快跟随小编一起学习一下吧
    2023-02-02
  • django框架model orM使用字典作为参数,保存数据的方法分析

    django框架model orM使用字典作为参数,保存数据的方法分析

    这篇文章主要介绍了django框架model orM使用字典作为参数,保存数据的方法,结合实例形式分析了字典参数结合django model实现保存数据相关操作技巧,需要的朋友可以参考下
    2019-06-06
  • 如何理解Python中的变量

    如何理解Python中的变量

    在本篇文章里小编给大家分享的是关于Python中变量是什么意思的相关基础知识点,需要的朋友们可以学习下。
    2020-06-06
  • dataframe 按条件替换某一列中的值方法

    dataframe 按条件替换某一列中的值方法

    今天小编就为大家分享一篇dataframe 按条件替换某一列中的值方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • python flask几分钟实现web服务的例子

    python flask几分钟实现web服务的例子

    今天小编就为大家分享一篇python flask几分钟实现web服务的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python基础之for循环

    python基础之for循环

    这篇文章主要介绍了python的for循环,实例分析了Python中返回一个返回值与多个返回值的方法,需要的朋友可以参考下
    2021-10-10
  • Pytorch中使用TensorBoard详情

    Pytorch中使用TensorBoard详情

    这篇文章主要介绍了Pytorch中使用TensorBoard详情,TensorBoard的前段数据显示和后端数据记录是异步I/O的,即后端程序将数据写入到一个文件中,而前端程序读取文件中的数据来进行显示
    2022-06-06
  • 基于python中theano库的线性回归

    基于python中theano库的线性回归

    这篇文章主要为大家详细介绍了基于python中theano库的线性回归,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-08-08
  • Django Rest framework之权限的实现示例

    Django Rest framework之权限的实现示例

    这篇文章主要介绍了Django Rest framework之权限的实现示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-12-12
  • 关于Python中的编码规范

    关于Python中的编码规范

    这篇文章主要介绍了关于Python中的编码规范,一千个程序员有一千套编码规范,统一的编码规范可以提高开发效率,需要的朋友可以参考下
    2023-04-04

最新评论