OpenCV半小时掌握基本操作之直线检测

 更新时间:2021年09月01日 11:06:49   作者:我是小白呀  
这篇文章主要介绍了OpenCV基本操作之直线检测,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

【OpenCV】 ⚠️高手勿入! 半小时学会基本操作 ⚠️ 直线检测

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. (第 13 课)

在这里插入图片描述

霍夫直线变换

霍夫变换 (Hough Line Transform) 是图像处理中的一种特征提取技术. 通过平面空间到极值坐标空间的转换, 可以帮助我们实现直线检测. 如图:

在这里插入图片描述

原理详解

当我们把直线 y = kx + b 画在指标坐标系上, 如下图. 我们再从原点引线段到直线上的任一点.

在这里插入图片描述

我们可以得到这条线段与 x 轴的夹角为 θ, 距离是 r. 对于直线上的任一点 (x0, y0), 我们可以得到公式:

在这里插入图片描述

代码实战

HoughLines

格式:

cv2.HoughLines(image, rho, theta, threshold, lines=None, srn=None, stn=None, min_theta=None, max_theta=None)

参数:

  • image: 输入图像
  • rho: 线性搜索半径步长, 以像素为单位
  • theta: 线性搜索步长, 以弧度为单位
  • threshold: 累计阈值

例子:

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 读取图片
image = cv2.imread("sudoku.jpg")
image_copy = image.copy()

# 转换成灰度图
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 边缘检测, Sobel算子大小为3
edges = cv2.Canny(image_gray, 170, 220, apertureSize=3)

# 霍夫曼直线检测
lines = cv2.HoughLines(edges, 1, np.pi / 180, 250)

# 遍历
for line in lines:
    # 获取rho和theta
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 + 1000 * (-b))
    y1 = int(y0 + 1000 * (a))
    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))
    cv2.line(image_copy, (x1, y1), (x2, y2), (0, 0, 255), thickness=5)

# 图片展示
f, ax = plt.subplots(2, 2, figsize=(12, 12))

# 子图
ax[0, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
ax[0, 1].imshow(image_gray, "gray")
ax[1, 0].imshow(edges, "gray")
ax[1, 1].imshow(cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB))

# 标题
ax[0, 0].set_title("original")
ax[0, 1].set_title("image gray")
ax[1, 0].set_title("image edge")
ax[1, 1].set_title("image line")

plt.show()

输出结果:

在这里插入图片描述

在这里插入图片描述

HoughLinesP

此函数在 HoughLines 的基础上末尾加了一个代表概率 (Probabilistic) 的 P, 表明它可以采用累计概率霍夫变换, 来找出二值图像中的直线.

格式:

HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None)

参数:

  • image: 输入图像
  • rho: 线性搜索半径步长, 以像素为单位
  • theta: 线性搜索步长, 以弧度为单位
  • threshold: 累计阈值
  • minLineLength: 最短直线长度
  • maxLineGap: 最大孔隙距离

例子:

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 读取图片
image = cv2.imread("sudoku.jpg")
image_copy = image.copy()

# 转换成灰度图
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 边缘检测, Sobel算子大小为3
edges = cv2.Canny(image_gray, 170, 220, apertureSize=3)

# 霍夫曼直线检测
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength=100, maxLineGap=10)

# 遍历
for line in lines:

    # 获取坐标
    x1, y1, x2, y2 = line[0]
    cv2.line(image_copy, (x1, y1), (x2, y2), (0, 0, 255), thickness=5)


# 图片展示
f, ax = plt.subplots(2, 2, figsize=(12, 12))

# 子图
ax[0, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
ax[0, 1].imshow(image_gray, "gray")
ax[1, 0].imshow(edges, "gray")
ax[1, 1].imshow(cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB))

# 标题
ax[0, 0].set_title("original")
ax[0, 1].set_title("image gray")
ax[1, 0].set_title("image edge")
ax[1, 1].set_title("image line")

plt.show()

输出结果:

在这里插入图片描述

在这里插入图片描述

到此这篇关于OpenCV半小时掌握基本操作之直线检测的文章就介绍到这了,更多相关OpenCV直线检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pytorch cuda上tensor的定义 以及减少cpu的操作详解

    pytorch cuda上tensor的定义 以及减少cpu的操作详解

    这篇文章主要介绍了pytorch cuda上tensor的定义 以及减少cpu的操作详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • 封装一个python的pymysql操作类

    封装一个python的pymysql操作类

    这篇文章主要介绍了封装一个python的pymysql操作类的相关资料,需要的朋友可以参考下
    2022-12-12
  • python3实现ftp服务功能(服务端 For Linux)

    python3实现ftp服务功能(服务端 For Linux)

    这篇文章主要介绍了python3实现ftp服务功能,服务端 For Linux,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-03-03
  • Python入门开发教程  windows下搭建开发环境vscode的步骤详解

    Python入门开发教程 windows下搭建开发环境vscode的步骤详解

    大家都知道Python是跨平台的,它可以运行在Windows、Mac和各种Linux/Unix系统上。在Windows上写Python程序,放到Linux上也是能够运行的,今天给大家分享Python开发环境搭建vscode的步骤,一起看看吧
    2021-07-07
  • OpenCV 表盘指针自动读数的示例代码

    OpenCV 表盘指针自动读数的示例代码

    这篇文章主要介绍了OpenCV 表盘指针自动读数的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • python的sorted用法详解

    python的sorted用法详解

    在本篇文章里小编给大家整理了关于python的sorted用法以及相关实例内容,有需要的朋友们参考学习下。
    2019-06-06
  • 使用Matplotlib创建基本图表的详细指南

    使用Matplotlib创建基本图表的详细指南

    Matplotlib 是一个功能强大的 Python 库,用于创建各种类型的图表和可视化,在本文中,我们将提供一个完整的指南,介绍如何使用 Matplotlib 创建基本的图表,包括折线图、散点图、柱状图和饼图,感兴趣的小伙伴跟着小编一起来看看吧
    2024-05-05
  • 浅析Python中的多进程与多线程的使用

    浅析Python中的多进程与多线程的使用

    这篇文章主要介绍了Python中的多进程与多线程,线程与进程一直是Python学习和运用当中的重点和难点,本文采用简单的例子进行讲解,需要的朋友可以参考下
    2015-04-04
  • 通过cmd进入python的步骤

    通过cmd进入python的步骤

    在本篇文章里小编给大家整理了关于通过cmd进入python的步骤和实例,需要的朋友们可以参考下。
    2020-06-06
  • python线程join方法原理解析

    python线程join方法原理解析

    这篇文章主要介绍了python线程join方法原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02

最新评论