OpenCV半小时掌握基本操作之图像梯度

 更新时间:2021年09月01日 15:42:26   作者:我是小白呀  
这篇文章主要介绍了OpenCV基本操作之图像梯度,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

【OpenCV】⚠️高手勿入! 半小时学会基本操作⚠️图像梯度

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

在这里插入图片描述

梯度运算

梯度: 膨胀 (Dilating) - 腐蚀 (Eroding).

在这里插入图片描述

例子:

# 读取图片
pie = cv2.imread("pie.jpg")

# 核
kernel = np.ones((7, 7), np.uint8)

# 计算梯度
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel=kernel)

# 图片展示
cv2.imshow("gradient", gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

礼帽

礼帽 (Top Hat): 原始输入 - 开运算结果.

例子:

# 读取图片
img = cv2.imread("white.jpg")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel=kernel)

# 图片展示
cv2.imshow("tophat", tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

黑帽

黑帽 (Black Hat): 闭运算 - 原始输入.

例子:

# 读取图片
img = cv2.imread("white.jpg")

# 核
kernel = np.ones((7, 7), np.uint8)

# 礼帽
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel=kernel)

# 图片展示
cv2.imshow("blackhat", blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

Sobel 算子

Sobel 算子 (Sobeloperator) 是边缘检测中非常重要的一个算子. Sobel 算子是一类离散性差分算子, 用来运算图像高亮度函数的灰度之近似值.

格式:

cv2.Sobel(src, ddepth, dx, dy, ksize)

参数:

src: 原图

ddepth: 图片深度

dx: 水平方向

dy: 竖直方向

ksize: 算子大小

计算 x

代码:

# 读取图片
img = cv2.imread("pie.jpg")

# Sobel算子
sobelx = cv2.Sobel(img, -1, 1, 0, ksize=3)

# 展示图片
cv2.imshow("sobelx", sobelx)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

计算 y

代码:

# 读取图片
img = cv2.imread("pie.jpg")

# Sobel算子
sobely = cv2.Sobel(img, -1, 0, 1, ksize=3)

# 展示图片
cv2.imshow("sobely", sobely)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

计算 x+y

代码:

# 读取图片
img = cv2.imread("pie.jpg")

# Sobel算子
sobel = cv2.Sobel(img, -1, 1, 1, ksize=3)

# 展示图片
cv2.imshow("sobel", sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

融合

代码:

# Sobel算子
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)

# 转换成绝对值
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.convertScaleAbs(sobely)

# 融合
sobel_xy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)

# 展示图片
cv2.imshow("sobel_xy", sobel_xy)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

注: 当 ddepth 设置为 -1, 即与原图保持一致, 得到的结果可能是错误的. 计算梯度值可能出现负数, 负数会自动截断为 0. 为了避免信息丢失, 我们需要使用更高是数据类型 cv2.CV_64F, 再通过取绝对值将其映射到 cv2.CV_8U 类型.

到此这篇关于OpenCV半小时掌握基本操作之图像梯度的文章就介绍到这了,更多相关OpenCV图像梯度内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pandas ix &iloc &loc的区别

    pandas ix &iloc &loc的区别

    这篇文章主要介绍了pandas ix &iloc &loc的区别,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-01-01
  • keras 自定义loss model.add_loss的使用详解

    keras 自定义loss model.add_loss的使用详解

    这篇文章主要介绍了keras 自定义loss model.add_loss的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python中的re模块之正则表达式模块常用方法

    Python中的re模块之正则表达式模块常用方法

    re模块是Python中使用正则表达式的最基础的模块,re模块的这些功能覆盖了正则表达式的常见用法,使用re模块可以简化字符串的模式匹配、信息提取、过滤替换、切分等操作,本文给大家介绍正则表达式模块常用方法,感兴趣的朋友跟随小编一起看看吧
    2023-08-08
  • PyQt5实现五子棋游戏(人机对弈)

    PyQt5实现五子棋游戏(人机对弈)

    这篇文章主要为大家详细介绍了PyQt5实现五子棋游戏,人机对弈,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-01-01
  • Python3实现的反转单链表算法示例

    Python3实现的反转单链表算法示例

    这篇文章主要介绍了Python3实现的反转单链表算法,结合实例形式总结分析了Python基于迭代算法与递归算法实现的翻转单链表相关操作技巧,需要的朋友可以参考下
    2019-03-03
  • python将pandas datarame保存为txt文件的实例

    python将pandas datarame保存为txt文件的实例

    今天小编就为大家分享一篇python将pandas datarame保存为txt文件的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • 如何用 Python 处理不平衡数据集

    如何用 Python 处理不平衡数据集

    这篇文章主要介绍了如何用 Python 处理不平衡数据集,帮助大家更好的利用python进行数据分析,感兴趣的朋友可以了解下
    2021-01-01
  • python 中sys.getsizeof的用法说明

    python 中sys.getsizeof的用法说明

    这篇文章主要介绍了python 中sys.getsizeof的用法说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • python自动zip压缩目录的方法

    python自动zip压缩目录的方法

    这篇文章主要介绍了python自动zip压缩目录的方法,可实现调用zip.exe文件进行目录压缩的功能,需要的朋友可以参考下
    2015-06-06
  • Python绘图库Matplotlib的基本用法

    Python绘图库Matplotlib的基本用法

    这篇文章主要介绍了Python绘图库Matplotlib的基本用法,文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-05-05

最新评论