使用Python手工计算x的算数平方根,来自中国古人的数学智慧

 更新时间:2021年09月02日 12:07:59   作者:Hann Yang  
本篇采用的计算方法既非二分法也非牛顿迭代法,而是把中国古代的手工计算平方根的方法转成代码来完成。代码有点烦杂,算是抛砖引玉吧,期待高手们写出更好的代码来

代码 

sqrt(x, w=20, Float=False)
x 为非负实数,允许科学计数法
w 是当sqrt(x)为无理数或结果的小数部分很长时的最大位数。默认w=20
Float 当Float=True输出浮点数,w设置如超出float精度则失效。默认输出字符串类型

def sqrt(x,w=20,Float=False):
    if x==0 or x==1:return str(x*1.0)
    if x<0: raise ValueError('x>=0')
    s,power = str(x),0
    t = s.find('e')
    if t!=-1:
        s=s.split('e')
        s[1] = int(s[1])
        if int(s[1])%2:
            tmp = str(s[0])
            s = [tmp[0]+tmp[2]+tmp[1]+tmp[3:],s[1]-1]
        s,power = *s,
    t = s.find('.')
    if t!=-1:
        if t%2: s='0'+s
        if not len(s)%2: s+='0'
    else:
        if len(s)%2: s='0'+s
    s = s.split('.')
    t = t,len(s[0])//2
    try: s = s[0]+s[1]
    except: s = s[0]
    s = [s[i:i+2] for i in range(len(s)) if not i%2][::-1]
    n = int(s.pop())
    i = 1
    while n>0 and i*i<=n: i+=1
    i -= 1
    m,n = str(n-i*i),i
    div = lambda x,y:[(i,y-(20*x+i)*i) for i in range(10) if y>=(20*x+i)*i]
    dot,ret = t[1],str(n)
    while w>0:
        dot -= 1;
        if dot==0: ret += '.'
        if dot<=0: w-=1
        m += s.pop() if s else '00'
        q,d = div(n,int(m))[-1]
        m,n = str(d),10*n+q
        ret += str(q)
        if len(s)==0 and d==0:
            if ret.find('.')==-1: ret += '.0'
            break
    if power!=0:
        if power>0: ret += 'e+0'+str(power//2)
        else: ret += 'e-0'+str(power//2)[1:]
    if Float: ret = float(ret)
    return ret

原理

据说这个平方根计算法出自《九章算术》,成书在公元一世纪前后,总结了先秦到两汉的古代数学成就。古代数学家也真是鬼才,怎么想出来的?

操作过程:

小数点前后2位2位的隔开,不足2位用0补。然后首位试开方,第二位开始反复用公式 (Qn+1 * 20 + Qn) * Qn来试商 ; 下一结果Qn+2 = 10*Qn+1 + Qn。具体流程请自行搜索了解,大致流程如下:

测试 sqrt(n)与n**0.5

>>> for i in range(17):
	print(f'sqrt({i})={sqrt(i)}')
	print(f'{i}**0.5={i**0.5}')	
sqrt(0)=0.0
0**0.5=0.0
sqrt(1)=1.0
1**0.5=1.0
sqrt(2)=1.41421356237309504880
2**0.5=1.4142135623730951
sqrt(3)=1.73205080756887729352
3**0.5=1.7320508075688772
sqrt(4)=2.0
4**0.5=2.0
sqrt(5)=2.23606797749978969640
5**0.5=2.23606797749979
sqrt(6)=2.44948974278317809819
6**0.5=2.449489742783178
sqrt(7)=2.64575131106459059050
7**0.5=2.6457513110645907
sqrt(8)=2.82842712474619009760
8**0.5=2.8284271247461903
sqrt(9)=3.0
9**0.5=3.0
sqrt(10)=3.16227766016837933199
10**0.5=3.1622776601683795
sqrt(11)=3.31662479035539984911
11**0.5=3.3166247903554
sqrt(12)=3.46410161513775458705
12**0.5=3.4641016151377544
sqrt(13)=3.60555127546398929311
13**0.5=3.605551275463989
sqrt(14)=3.74165738677394138558
14**0.5=3.7416573867739413
sqrt(15)=3.87298334620741688517
15**0.5=3.872983346207417
sqrt(16)=4.0
16**0.5=4.0
>>> 
>>> 
>>> sqrt(2,Float=True) == 2**0.5
True
>>> sqrt(3,Float=True) == 3**0.5
True
>>> sqrt(123,Float=True) == 123**0.5
True
>>> 

科学计算法测试

>>> sqrt(1.23e+50)
'1.10905365064094171620e+025'
>>> 1.23e+50**0.5
1.1090536506409416e+25
>>> sqrt(1.23e+51)
'3.50713558335003638336e+025'
>>> 1.23e+51**0.5
3.5071355833500364e+25
>>> sqrt(1.23e-50)
'1.10905365064094171620e-025'
>>> 1.23e-50**0.5
1.1090536506409418e-25
>>> sqrt(1.23e-51)
'3.50713558335003638336e-026'
>>> 1.23e-51**0.5
3.5071355833500365e-26
>>> 

精度测试

>>> sqrt(2,100)
'1.41421356237309504880168872420969807856967187537694
80731766797379907324784621070388503875343276415727'
>>> sqrt(10,500)
'3.16227766016837933199889354443271853371955513932521
68268575048527925944386392382213442481083793002951
87347284152840055148548856030453880014690519596700
15390334492165717925994065915015347411333948412408
53169295770904715764610443692578790620378086099418
28371711548406328552999118596824564203326961604691
31433612894979189026652954361267617878135006138818
62785804636831349524780311437693346719738195131856
78403231241795402218308045872844614600253577579702
82864402902440797789603454398916334922265261206779'
>>> sqrt(123,2000)
'11.09053650640941716205160010260993291846337674245402
00228773128390850016331012896052334560795952104923
97609680678955280792187905933115292625456231839306
77251943912251383176574941199469582196976000438135
40867472202696805822192936674286399297485980945076
78295660716567970352602444301464684924479636459099
14867193001802834979182445692668356613065880869548
25999929108256938950212808340223106891096223696155
58407975630369894453553840958193501976809032496435
98351605065147790119568667920441106521130541775416
88403618227856731042118992185281429619080341919784
91236339758444278806715795552342614568993355758259
00257454016962686033789212494918951906742724387717
86816775058970553110606825772728456503631816127185
97236514403953501043370950197906664648656587402375
47456007486620199478701365589929806411967684259454
52983826062182085142259698311212942126801021825240
49746216571370198706996668818361845968235199845816
69902568378075870406180767774203205467306930309438
16832697339952984981648138573158982379175644441470
50866454616067044997958059525209028336061119869487
42330123683852090419874148218422184948658174234109
57266920859313915279433828848348895422861007776818
60008218306382698626583716405660864687800252861028
31434598682004467042622580768146827595778429365752
19552960734589394860581552514632178318401717998004
12904477515916582731378709757426533231624676879051
21277303475419893966421915682962327965202183939540
07041575389626966661084388718863067485822881867488
00698329255619212758441301451712107894934052042668
13620261632356745839351541875140890682676375675084
74266141686980135645708807796240849684849035273656
15026469136389861472142022294507047846522584450886
83823021978858519029304962564972861464819539784518
43062402845984165814550404820570869649363216162428
32571582506529019502195720558586845830492641836612
65156560044594234298289454649568716622838760718998
14917847213523793754337786561375901264942957378010
57481468928695787589958271831183026476218342365982
72020291818311722410861264031411990033164594115086'
>>> 

1000位到1万位的耗时测试

>>> from time import time
>>> for i in range(1,11):
	t = time()
	s = sqrt(2,i*1000)
	print(i*1000,':',time()-t) 
1000 : 0.09099745750427246
2000 : 0.5609970092773438
3000 : 1.7489948272705078
4000 : 3.7850000858306885
5000 : 7.239997863769531
6000 : 12.108997106552124
7000 : 19.044997692108154
8000 : 28.065003395080566
9000 : 39.57198643684387
10000 : 54.04999876022339
>>> 

以上就是使用Python手工计算x的算数平方根,更多关于Python手工计算x的算数平方根的资料请关注脚本之家其它相关文章!

相关文章

  • 用python写一个带有gui界面的密码生成器

    用python写一个带有gui界面的密码生成器

    这篇文章主要介绍了用python写一个带有gui界面的密码生成器,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-11-11
  • 对python字典元素的添加与修改方法详解

    对python字典元素的添加与修改方法详解

    今天小编就为大家分享一篇对python字典元素的添加与修改方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python FFT合成波形的实例

    Python FFT合成波形的实例

    今天小编大家分享一篇Python FFT合成波形的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python进阶之尾递归的用法实例

    Python进阶之尾递归的用法实例

    本篇文章主要介绍了Python进阶之尾递归的用法实例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-01-01
  • python模块的安装以及安装失败的解决方法

    python模块的安装以及安装失败的解决方法

    Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句。模块让你能够有逻辑地组织你的 Python 代码段。把相关的代码分配到一个模块里能让你的代码更好用,更易懂。模块能定义函数,类和变量,模块里也能包含可执行的代码
    2021-11-11
  • Python实现自动整理表格的示例代码

    Python实现自动整理表格的示例代码

    这篇文章主要为大家详细介绍了如何利用Python实现自动整理表格的功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-03-03
  • Python中的json内置库详解

    Python中的json内置库详解

    这篇文章主要介绍了Python中的json内置库详解,在学习做自动化测试的过程中,python 里有一个内置的 json 库,必须要学习好,json 是用于存储和交换数据的语法,是一种轻量级的数据交换式使用场景,需要的朋友可以参考下
    2023-08-08
  • Python3.5装饰器典型案例分析

    Python3.5装饰器典型案例分析

    这篇文章主要介绍了Python3.5装饰器,结合实例形式分析了装饰器修饰有参数函数、装饰器修饰函数参数等情况相关使用技巧,需要的朋友可以参考下
    2019-04-04
  • Python sklearn转换器估计器和K-近邻算法

    Python sklearn转换器估计器和K-近邻算法

    这篇文章主要介绍了Python sklearn转换器估计器和K-近邻算法,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-08-08
  • Python实现的多进程和多线程功能示例

    Python实现的多进程和多线程功能示例

    这篇文章主要介绍了Python实现的多进程和多线程功能,结合实例形式分析了Python多线程与多进程实现分布式系统功能相关操作技巧,需要的朋友可以参考下
    2018-05-05

最新评论