OpenCV 图像对比度的实践

 更新时间:2021年09月05日 10:15:49   作者:翟天保Steven  
本文主要介绍了OpenCV 图像对比度的实践,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文主要介绍了OpenCV 图像对比度,具有一定的参考价值,感兴趣的可以了解一下

实现原理

图像对比度指的是一幅图像中明暗区域最亮的白和最暗的黑之间不同亮度层级的测量,即指一幅图像灰度反差的大小。差异范围越大代表对比越大,差异范围越小代表对比越小。设置一个基准值thresh,当percent大于0时,需要令图像中的颜色对比更强烈,即数值距离thresh越远,则变化越大;当percent等于1时,对比强到极致,只有255和0的区分;当percent等于0时,不变;当percent小于0时,对比下降,即令远离thresh的数值更近些;当percent等于-1时,没有对比了,全是thresh值。

对比度调整算法的实现流程如下:

1.设置调整参数percent,取值为-100到100,类似PS中设置,归一化后为-1到1。

2.针对图像所有像素点单个处理。当percent大于等于0时,对比增强,调整后的RGB三通道数值为:

3.若percent小于0时,对比降低,此时调整后的图像RGB三通道值为:

4.若percent等于1时,大于thresh则等于255,小于则等于0。

至此,图像实现了明度的调整,算法逻辑参考xingyanxiao。C++实现代码如下。

功能函数代码

// 对比度
cv::Mat Contrast(cv::Mat src, int percent)
{
	float alpha = percent / 100.f;
	alpha = max(-1.f, min(1.f, alpha));
	cv::Mat temp = src.clone();
	int row = src.rows;
	int col = src.cols;
	int thresh = 127;
	for (int i = 0; i < row; ++i)
	{
		uchar *t = temp.ptr<uchar>(i);
		uchar *s = src.ptr<uchar>(i);
		for (int j = 0; j < col; ++j)
		{
			uchar b = s[3 * j];
			uchar g = s[3 * j + 1];
			uchar r = s[3 * j + 2];
			int newb, newg, newr;
			if (alpha == 1)
			{
				t[3 * j + 2] = r > thresh ? 255 : 0;
				t[3 * j + 1] = g > thresh ? 255 : 0;
				t[3 * j] = b > thresh ? 255 : 0;
				continue;
			}
			else if (alpha >= 0)
			{
				newr = static_cast<int>(thresh + (r - thresh) / (1 - alpha));
				newg = static_cast<int>(thresh + (g - thresh) / (1 - alpha));
				newb = static_cast<int>(thresh + (b - thresh) / (1 - alpha));
			}
			else {
				newr = static_cast<int>(thresh + (r - thresh) * (1 + alpha));
				newg = static_cast<int>(thresh + (g - thresh) * (1 + alpha));
				newb = static_cast<int>(thresh + (b - thresh) * (1 + alpha));
 
			}
			newr = max(0, min(255, newr));
			newg = max(0, min(255, newg));
			newb = max(0, min(255, newb));
			t[3 * j + 2] = static_cast<uchar>(newr);
			t[3 * j + 1] = static_cast<uchar>(newg);
			t[3 * j] = static_cast<uchar>(newb);
		}
	}
	return temp;
}

C++测试代码

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
 
cv::Mat Contrast(cv::Mat src, int percent);
 
int main()
{
	cv::Mat src = imread("5.jpg");
	cv::Mat result = Contrast(src, 50.f);
	imshow("original", src);
	imshow("result", result);
	waitKey(0);
	return 0;
}
 
// 对比度
cv::Mat Contrast(cv::Mat src, int percent)
{
	float alpha = percent / 100.f;
	alpha = max(-1.f, min(1.f, alpha));
	cv::Mat temp = src.clone();
	int row = src.rows;
	int col = src.cols;
	int thresh = 127;
	for (int i = 0; i < row; ++i)
	{
		uchar *t = temp.ptr<uchar>(i);
		uchar *s = src.ptr<uchar>(i);
		for (int j = 0; j < col; ++j)
		{
			uchar b = s[3 * j];
			uchar g = s[3 * j + 1];
			uchar r = s[3 * j + 2];
			int newb, newg, newr;
			if (alpha == 1)
			{
				t[3 * j + 2] = r > thresh ? 255 : 0;
				t[3 * j + 1] = g > thresh ? 255 : 0;
				t[3 * j] = b > thresh ? 255 : 0;
				continue;
			}
			else if (alpha >= 0)
			{
				newr = static_cast<int>(thresh + (r - thresh) / (1 - alpha));
				newg = static_cast<int>(thresh + (g - thresh) / (1 - alpha));
				newb = static_cast<int>(thresh + (b - thresh) / (1 - alpha));
			}
			else {
				newr = static_cast<int>(thresh + (r - thresh) * (1 + alpha));
				newg = static_cast<int>(thresh + (g - thresh) * (1 + alpha));
				newb = static_cast<int>(thresh + (b - thresh) * (1 + alpha));
 
			}
			newr = max(0, min(255, newr));
			newg = max(0, min(255, newg));
			newb = max(0, min(255, newb));
			t[3 * j + 2] = static_cast<uchar>(newr);
			t[3 * j + 1] = static_cast<uchar>(newg);
			t[3 * j] = static_cast<uchar>(newb);
		}
	}
	return temp;
}

测试效果

图1 原图

 

图2 参数为50的效果图

图3 参数为-50的效果图

通过调整percent可以实现图像对比度的调整。

到此这篇关于OpenCV 图像对比度的实践的文章就介绍到这了,更多相关OpenCV 图像对比度内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pandas分组聚合详解

    pandas分组聚合详解

    这篇文章主要介绍了pandas分组聚合详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • 关于pytorch训练分类器

    关于pytorch训练分类器

    这篇文章主要介绍了关于pytorch训练分类器问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • 利用Python将时间或时间间隔转为ISO 8601格式方法示例

    利用Python将时间或时间间隔转为ISO 8601格式方法示例

    国际标准化组织的国际标准ISO8601是日期和时间的表示方法,全称为《数据存储和交换形式·信息交换·日期和时间的表示方法》,下面这篇文章主要给大家介绍了关于利用Python将时间或时间间隔转为ISO 8601格式的相关资料,需要的朋友可以参考下。
    2017-09-09
  • python批量修改xml属性的实现方式

    python批量修改xml属性的实现方式

    这篇文章主要介绍了python批量修改xml属性的实现方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python 字符串转列表 list 出现\ufeff的解决方法

    python 字符串转列表 list 出现\ufeff的解决方法

    下面小编就为大家带来一篇python 字符串转列表 list 出现\ufeff的解决方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • python字符串常用方法

    python字符串常用方法

    这篇文章主要介绍了python字符串常用方法,find、count、replace、split、startswith、endswith等多种方法,需要的朋友可以参考一下文章得具体内容,希望对你有所帮助
    2021-10-10
  • Python+OpenCV+pyQt5录制双目摄像头视频的实例

    Python+OpenCV+pyQt5录制双目摄像头视频的实例

    今天小编就为大家分享一篇Python+OpenCV+pyQt5录制双目摄像头视频的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • python中协程实现TCP连接的实例分析

    python中协程实现TCP连接的实例分析

    在本篇文章中我们给大家分享了python中协程实现TCP连接的代码示例内容,有需要的朋友们可以跟着学习下。
    2018-10-10
  • 使用Python进行同期群分析(Cohort Analysis)

    使用Python进行同期群分析(Cohort Analysis)

    同期群(Cohort)的字面意思(有共同特点或举止类同的)一群人,比如不同性别,不同年龄。这篇文章主要介绍了用Python语言来进行同期群分析,感兴趣的同学可以阅读参考一下本文
    2023-03-03
  • python中几种自动微分库解析

    python中几种自动微分库解析

    这篇文章主要介绍了python中几种自动微分库解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08

最新评论