pytorch教程实现mnist手写数字识别代码示例

 更新时间:2021年09月07日 14:26:09   作者:xz1308579340  
这篇文章主要讲解了pytorch教程中如何实现mnist手写数字识别,文中附有详细的代码示例,test准确率98%,有需要的朋友可以借鉴参考下

1.构建网络

nn.Moudle是pytorch官方指定的编写Net模块,在init函数中添加需要使用的层,在foeword中定义网络流向。

下面详细解释各层:

conv1层:输入channel = 1 ,输出chanael = 10,滤波器5*5

maxpooling = 2*2

conv2层:输入channel = 10 ,输出chanael = 20,滤波器5*5,

dropout

maxpooling = 2*2

fc1层:输入320 个神经单元,输出50个神经单元
fc1层:输入50个神经单元 ,输出10个神经单元
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)         
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10) 
    def forward(self, x):                                 #x.size() = 28*28*1
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))  #x.size() =12*12*10    
        x = x.view(-1, 320)                                          #x.size() =1*320 
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

2.编写训练代码

model = Net()                                 #调用写好的网络
if args.cuda:                                 #如果有GPU使用CPU
    model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)   #设置SGD随机梯度下降算法
def train(epoch):                                                 
    model.train()                             
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()                                  #梯度初始化为O
        output = model(data) 
        loss = F.nll_loss(output, target)                      #简历loss function
        loss.backward()                                        #反向传播,计算梯度
        optimizer.step()                                       #更新权重
        if batch_idx % args.log_interval == 0:                 #输出信息
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0]))

3.编写测试代码

def test():
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        output = model(data)
        test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss
        pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
        correct += pred.eq(target.data.view_as(pred)).long().cpu().sum()
     test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

4.指导程序train和test

for epoch in range(1, args.epochs + 1):
    train(epoch)                              #训练N个epoch
    test()                                    #检验在测试集上的表现

5.完整代码

# -*- coding: utf-8 -*-
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                    help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                    help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
                    help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                    help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                    help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
                    help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
 
torch.manual_seed(args.seed)
if args.cuda:
    torch.cuda.manual_seed(args.seed) 
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10) 
    def forward(self, x):
        print (x.size())
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        print(x.size())
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        print(x.size())
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
 model = Net()                                 #调用写好的网络
if args.cuda:                                 #如果有GPU使用CPU
    model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)   #设置SGD随机梯度下降算法
def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()                                  #梯度初始化为O
        output = model(data)
        loss = F.nll_loss(output, target)                      #简历loss function
        loss.backward()                                        #反向传播,计算梯度
        optimizer.step()                                       #更新权重
        if batch_idx % args.log_interval == 0:                 #输出信息
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0]))
def test():
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        output = model(data)
        test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss
        pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
        correct += pred.eq(target.data.view_as(pred)).long().cpu().sum()
 
    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset))) 
for epoch in range(1, args.epochs + 1):
    train(epoch)
    test()

以上就是pytorch教程实现mnist手写数字识别代码示例的详细内容,更多关于pytorch实现mnist手写数字识别的资料请关注脚本之家其它相关文章!

相关文章

  • Python遍历列表时删除元素案例

    Python遍历列表时删除元素案例

    这篇文章主要介绍了Python遍历列表时删除元素案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下
    2022-09-09
  • python利用ffmpeg进行录制屏幕的方法

    python利用ffmpeg进行录制屏幕的方法

    今天小编就为大家分享一篇python利用ffmpeg进行录制屏幕的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • pycharm 使用心得(五)断点调试

    pycharm 使用心得(五)断点调试

    PyCharm 作为IDE,断点调试是必须有的功能。否则,我们还真不如用纯编辑器写的快。
    2014-06-06
  • Python pygame项目实战英雄动画特效实现

    Python pygame项目实战英雄动画特效实现

    这篇文章主要为大家介绍了Python pygame项目实战英雄动画特效实现示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-08-08
  • 利用Django-environ如何区分不同环境

    利用Django-environ如何区分不同环境

    这篇文章主要给大家介绍了关于利用Django-environ如何区分不同环境的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用django具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-08-08
  • python3获取url文件大小示例代码

    python3获取url文件大小示例代码

    这篇文章主要介绍了python3获取url文件大小,本文通过示例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09
  • OpenCV霍夫圆变换cv2.HoughCircles()

    OpenCV霍夫圆变换cv2.HoughCircles()

    这篇博客将学习如何使用霍夫圆变换在图像中找到圆圈,OpenCV使用cv2.HoughCircles()实现霍夫圆变换,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-07-07
  • python3实现弹弹球小游戏

    python3实现弹弹球小游戏

    这篇文章主要介绍了python3实现弹弹球小游戏,图形用户界面tkinter,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-11-11
  • python属于跨平台语言码

    python属于跨平台语言码

    在本篇文章里小编给大家整理的是关于python是否跨平台的相关知识点文章,有兴趣的朋友们可以参考下。
    2020-06-06
  • Pytorch中实现CPU和GPU之间的切换的两种方法

    Pytorch中实现CPU和GPU之间的切换的两种方法

    本文主要介绍了Pytorch中实现CPU和GPU之间的切换的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-01-01

最新评论