SpringBoot+SpringBatch+Quartz整合定时批量任务方式
一、引言
最近一周,被借调到其他部门,赶一个紧急需求,需求内容如下:
PC网页触发一条设备升级记录(下图),后台要定时批量设备更新。这里定时要用到Quartz,批量数据处理要用到SpringBatch,二者结合,可以完成该需求。
由于之前,没有用过SpringBatch,于是上网查了下资料,发现可参考的不是很多,于是只能去慢慢的翻看官方文档。
遇到不少问题,就记录一下吧。
二、代码具体实现
1、pom文件
<dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.postgresql</groupId> <artifactId>postgresql</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-jdbc</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-batch</artifactId> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-batch</artifactId> </dependency> </dependencies>
2、application.yaml文件
spring: datasource: username: thinklink password: thinklink url: jdbc:postgresql://172.16.205.54:5432/thinklink driver-class-name: org.postgresql.Driver batch: job: enabled: false server: port: 8073 #upgrade-dispatch-base-url: http://172.16.205.125:8080/api/rpc/dispatch/command/ upgrade-dispatch-base-url: http://172.16.205.211:8080/api/noauth/rpc/dispatch/command/ # 每次批量处理的数据量,默认为5000 batch-size: 5000
3、Service实现类
触发批处理任务的入口,执行一个job
@Service("batchService") public class BatchServiceImpl implements BatchService { // 框架自动注入 @Autowired private JobLauncher jobLauncher; @Autowired private Job updateDeviceJob; /** * 根据 taskId 创建一个Job * @param taskId * @throws Exception */ @Override public void createBatchJob(String taskId) throws Exception { JobParameters jobParameters = new JobParametersBuilder() .addString("taskId", taskId) .addString("uuid", UUID.randomUUID().toString().replace("-","")) .toJobParameters(); // 传入一个Job任务和任务需要的参数 jobLauncher.run(updateDeviceJob, jobParameters); } }
4、SpringBatch配置类
此部分最重要(☆☆☆☆☆)
@Configuration public class BatchConfiguration { private static final Logger log = LoggerFactory.getLogger(BatchConfiguration.class); @Value("${batch-size:5000}") private int batchSize; // 框架自动注入 @Autowired public JobBuilderFactory jobBuilderFactory; // 框架自动注入 @Autowired public StepBuilderFactory stepBuilderFactory; // 数据过滤器,对从数据库读出来的数据,注意进行操作 @Autowired public TaskItemProcessor taskItemProcessor; // 接收job参数 public Map<String, JobParameter> parameters; public Object taskId; @Autowired private JdbcTemplate jdbcTemplate; // 读取数据库操作 @Bean @StepScope public JdbcCursorItemReader<DispatchRequest> itemReader(DataSource dataSource) { String querySql = " SELECT " + " e. ID AS taskId, " + " e.user_id AS userId, " + " e.timing_startup AS startTime, " + " u.device_id AS deviceId, " + " d.app_name AS appName, " + " d.compose_file AS composeFile, " + " e.failure_retry AS failureRetry, " + " e.tetry_times AS retryTimes, " + " e.device_managered AS deviceManagered " + " FROM " + " eiot_upgrade_task e " + " LEFT JOIN eiot_upgrade_device u ON e. ID = u.upgrade_task_id " + " LEFT JOIN eiot_app_detail d ON e.app_id = d. ID " + " WHERE " + " ( " + " u.device_upgrade_status = 0 " + " OR u.device_upgrade_status = 2" + " )" + " AND e.tetry_times > u.retry_times " + " AND e. ID = ?"; return new JdbcCursorItemReaderBuilder<DispatchRequest>() .name("itemReader") .sql(querySql) .dataSource(dataSource) .queryArguments(new Object[]{parameters.get("taskId").getValue()}) .rowMapper(new DispatchRequest.DispatchRequestRowMapper()) .build(); } // 将结果写回数据库 @Bean @StepScope public ItemWriter<ProcessResult> itemWriter() { return new ItemWriter<ProcessResult>() { private int updateTaskStatus(DispatchRequest dispatchRequest, int status) { log.info("update taskId: {}, deviceId: {} to status {}", dispatchRequest.getTaskId(), dispatchRequest.getDeviceId(), status); Integer retryTimes = jdbcTemplate.queryForObject( "select retry_times from eiot_upgrade_device where device_id = ? and upgrade_task_id = ?", new Object[]{ dispatchRequest.getDeviceId(), dispatchRequest.getTaskId()}, Integer.class ); retryTimes += 1; int updateCount = jdbcTemplate.update("update eiot_upgrade_device set device_upgrade_status = ?, retry_times = ? " + "where device_id = ? and upgrade_task_id = ?", status, retryTimes, dispatchRequest.getDeviceId(), dispatchRequest.getTaskId()); if (updateCount <= 0) { log.warn("no task updated"); } else { log.info("count of {} task updated", updateCount); } // 最后一次重试 if (status == STATUS_DISPATCH_FAILED && retryTimes == dispatchRequest.getRetryTimes()) { log.info("the last retry of {} failed, inc deviceManagered", dispatchRequest.getTaskId()); return 1; } else { return 0; } } @Override @Transactional public void write(List<? extends ProcessResult> list) throws Exception { Map taskMap = jdbcTemplate.queryForMap( "select device_managered, device_count, task_status from eiot_upgrade_task where id = ?", list.get(0).getDispatchRequest().getTaskId() // 我们认定一个批量里面,taskId都是一样的 ); int deviceManagered = (int)taskMap.get("device_managered"); Integer deviceCount = (Integer) taskMap.get("device_count"); if (deviceCount == null) { log.warn("deviceCount of task {} is null", list.get(0).getDispatchRequest().getTaskId()); } int taskStatus = (int)taskMap.get("task_status"); for (ProcessResult result: list) { deviceManagered += updateTaskStatus(result.getDispatchRequest(), result.getStatus()); } if (deviceCount != null && deviceManagered == deviceCount) { taskStatus = 2; //任务状态 0:待升级,1:升级中,2:已完成 } jdbcTemplate.update("update eiot_upgrade_task set device_managered = ?, task_status = ? " + "where id = ?", deviceManagered, taskStatus, list.get(0).getDispatchRequest().getTaskId()); } }; } /** * 定义一个下发更新的 job * @return */ @Bean public Job updateDeviceJob(Step updateDeviceStep) { return jobBuilderFactory.get(UUID.randomUUID().toString().replace("-", "")) .listener(new JobListener()) // 设置Job的监听器 .flow(updateDeviceStep)// 执行下发更新的Step .end() .build(); } /** * 定义一个下发更新的 step * @return */ @Bean public Step updateDeviceStep(JdbcCursorItemReader<DispatchRequest> itemReader,ItemWriter<ProcessResult> itemWriter) { return stepBuilderFactory.get(UUID.randomUUID().toString().replace("-", "")) .<DispatchRequest, ProcessResult> chunk(batchSize) .reader(itemReader) //根据taskId从数据库读取更新设备信息 .processor(taskItemProcessor) // 每条更新信息,执行下发更新接口 .writer(itemWriter) .build(); } // job 监听器 public class JobListener implements JobExecutionListener { @Override public void beforeJob(JobExecution jobExecution) { log.info(jobExecution.getJobInstance().getJobName() + " before... "); parameters = jobExecution.getJobParameters().getParameters(); taskId = parameters.get("taskId").getValue(); log.info("job param taskId : " + parameters.get("taskId")); } @Override public void afterJob(JobExecution jobExecution) { log.info(jobExecution.getJobInstance().getJobName() + " after... "); // 当所有job执行完之后,查询设备更新状态,如果有失败,则要定时重新执行job String sql = " SELECT " + " count(*) " + " FROM " + " eiot_upgrade_device d " + " LEFT JOIN eiot_upgrade_task u ON d.upgrade_task_id = u. ID " + " WHERE " + " u. ID = ? " + " AND d.retry_times < u.tetry_times " + " AND ( " + " d.device_upgrade_status = 0 " + " OR d.device_upgrade_status = 2 " + " ) "; // 获取更新失败的设备个数 Integer count = jdbcTemplate.queryForObject(sql, new Object[]{taskId}, Integer.class); log.info("update device failure count : " + count); // 下面是使用Quartz触发定时任务 // 获取任务时间,单位秒 // String time = jdbcTemplate.queryForObject(sql, new Object[]{taskId}, Integer.class); // 此处方便测试,应该从数据库中取taskId对应的重试间隔,单位秒 Integer millSecond = 10; if(count != null && count > 0){ String jobName = "UpgradeTask_" + taskId; String reTaskId = taskId.toString(); Map<String,Object> params = new HashMap<>(); params.put("jobName",jobName); params.put("taskId",reTaskId); if (QuartzManager.checkNameNotExist(jobName)) { QuartzManager.scheduleRunOnceJob(jobName, RunOnceJobLogic.class,params,millSecond); } } } } }
5、Processor,处理每条数据
可以在此对数据进行过滤操作
@Component("taskItemProcessor") public class TaskItemProcessor implements ItemProcessor<DispatchRequest, ProcessResult> { public static final int STATUS_DISPATCH_FAILED = 2; public static final int STATUS_DISPATCH_SUCC = 1; private static final Logger log = LoggerFactory.getLogger(TaskItemProcessor.class); @Value("${upgrade-dispatch-base-url:http://localhost/api/v2/rpc/dispatch/command/}") private String dispatchUrl; @Autowired JdbcTemplate jdbcTemplate; /** * 在这里,执行 下发更新指令 的操作 * @param dispatchRequest * @return * @throws Exception */ @Override public ProcessResult process(final DispatchRequest dispatchRequest) { // 调用接口,下发指令 String url = dispatchUrl + dispatchRequest.getDeviceId()+"/"+dispatchRequest.getUserId(); log.info("request url:" + url); RestTemplate restTemplate = new RestTemplate(); HttpHeaders headers = new HttpHeaders(); headers.setContentType(MediaType.APPLICATION_JSON_UTF8); MultiValueMap<String, String> params = new LinkedMultiValueMap<String, String>(); JSONObject jsonOuter = new JSONObject(); JSONObject jsonInner = new JSONObject(); try { jsonInner.put("jobId",dispatchRequest.getTaskId()); jsonInner.put("name",dispatchRequest.getName()); jsonInner.put("composeFile", Base64Util.bytesToBase64Str(dispatchRequest.getComposeFile())); jsonInner.put("policy",new JSONObject().put("startTime",dispatchRequest.getPolicy())); jsonInner.put("timestamp",dispatchRequest.getTimestamp()); jsonOuter.put("method","updateApp"); jsonOuter.put("params",jsonInner); } catch (JSONException e) { log.info("JSON convert Exception :" + e); }catch (IOException e) { log.info("Base64Util bytesToBase64Str :" + e); } log.info("request body json :" + jsonOuter); HttpEntity<String> requestEntity = new HttpEntity<String>(jsonOuter.toString(),headers); int status; try { ResponseEntity<String> response = restTemplate.postForEntity(url,requestEntity,String.class); log.info("response :" + response); if (response.getStatusCode() == HttpStatus.OK) { status = STATUS_DISPATCH_SUCC; } else { status = STATUS_DISPATCH_FAILED; } }catch (Exception e){ status = STATUS_DISPATCH_FAILED; } return new ProcessResult(dispatchRequest, status); } }
6、封装数据库返回数据的实体Bean
注意静态内部类
public class DispatchRequest { private String taskId; private String deviceId; private String userId; private String name; private byte[] composeFile; private String policy; private String timestamp; private String md5; private int failureRetry; private int retryTimes; private int deviceManagered; // 省略构造函数,setter/getter/tostring方法 //...... public static class DispatchRequestRowMapper implements RowMapper<DispatchRequest> { @Override public DispatchRequest mapRow(ResultSet resultSet, int i) throws SQLException { DispatchRequest dispatchRequest = new DispatchRequest(); dispatchRequest.setTaskId(resultSet.getString("taskId")); dispatchRequest.setUserId(resultSet.getString("userId")); dispatchRequest.setPolicy(resultSet.getString("startTime")); dispatchRequest.setDeviceId(resultSet.getString("deviceId")); dispatchRequest.setName(resultSet.getString("appName")); dispatchRequest.setComposeFile(resultSet.getBytes("composeFile")); dispatchRequest.setTimestamp(DateUtil.DateToString(new Date())); dispatchRequest.setRetryTimes(resultSet.getInt("retryTimes")); dispatchRequest.setFailureRetry(resultSet.getInt("failureRetry")); dispatchRequest.setDeviceManagered(resultSet.getInt("deviceManagered")); return dispatchRequest; } } }
7、启动类上要加上注解
@SpringBootApplication @EnableBatchProcessing public class Application { public static void main(String[] args) { SpringApplication.run(Application.class, args); } }
三、小结一下
其实SpringBatch并没有想象中那么好用,当从数据库中每次取5000条数据后,进入processor中是逐条处理的,这个时候不能不行操作,等5000条数据处理完之后,再一次性执行ItemWriter方法。
在使用的过程中,最坑的地方是ItemReader和ItemWriter这两个地方,如何执行自定义的Sql,参考文中代码就行。至于Quartz定时功能,很简单,只要定时创建SpringBatch里面的Job,让这个job启动就好了,此处就不在给出了,贴的代码太多了。由于公司一些原因,代码不能放到GitHub上。
spring-batch与quartz集成过程中遇到的问题
问题
启动时报Exception
Driver's Blob representation is of an unsupported type: weblogic.jdbc.wrapper.Blob_oracle_sql_BLOB
原因
quartz的driverDelegateClass配置的是OracleDelegate,应用运行在weblogic上
解决
driverDelegateClass对应配置改为
org.quartz.impl.jdbcjobstore.oracle.weblogic.WebLogicOracleDelegate
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Java Mybatis foreach嵌套foreach List<list<Object>&
在MyBatis的mapper.xml文件中,foreach元素常用于动态生成SQL查询条件,此元素包括item(必选,元素别名)、index(可选,元素序号或键)、collection(必选,指定迭代对象)、open、separator、close(均为可选,用于定义SQL结构)2024-09-09
最新评论