由浅入深学习TensorFlow MNIST 数据集

 更新时间:2021年09月07日 17:10:25   作者:我是小白呀  
这篇文章主要由浅入深学习的讲解TensorFlow MNIST 数据集,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

MNIST 数据集介绍

MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图.

LeNet 模型介绍

LeNet 网络最早由纽约大学的 Yann LeCun 等人于 1998 年提出, 也称 LeNet5. LeNet 是神经网络的鼻祖, 被誉为卷积神经网络的 “Hello World”.

卷积

在这里插入图片描述

池化 (下采样)

在这里插入图片描述

激活函数 (ReLU)

在这里插入图片描述

LeNet 逐层分析

1. 第一个卷积层

在这里插入图片描述

2. 第一个池化层

在这里插入图片描述

3. 第二个卷积层

在这里插入图片描述

4. 第二个池化层

在这里插入图片描述

5. 全连接卷积层

在这里插入图片描述

6. 全连接层

在这里插入图片描述

7. 全连接层 (输出层)

在这里插入图片描述

代码实现

导包

from tensorflow.keras.datasets import mnist
from matplotlib import pyplot as plt
import numpy as np
import tensorflow as tf

读取 & 查看数据

# ------------------1. 读取 & 查看数据------------------

# 读取数据
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 数据集查看
print(X_train.shape)  # (60000, 28, 28)
print(y_train.shape)  # (60000,)
print(X_test.shape)  # (10000, 28, 28)
print(y_test.shape)  # (10000,)
print(type(X_train))  # <class 'numpy.ndarray'>

# 图片显示
plt.imshow(X_train[0], cmap="Greys")  # 查看第一张图片
plt.show()

数据预处理

# ------------------2. 数据预处理------------------

# 格式转换 (将图片从28*28扩充为32*32)
X_train = np.pad(X_train, ((0, 0), (2, 2), (2, 2)), "constant", constant_values=0)
X_test = np.pad(X_test, ((0, 0), (2, 2), (2, 2)), "constant", constant_values=0)
print(X_train.shape)  # (60000, 32, 32)
print(X_test.shape)  # (10000, 32, 32)

# 数据集格式变换
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)

# 数据正则化
X_train /= 255
X_test /= 255

# 数据维度转换
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)
print(X_train.shape)  # (60000, 32, 32, 1)
print(X_test.shape)  # (10000, 32, 32, 1)

模型建立

# 第一个卷积层
conv_layer_1 = tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding="valid", activation=tf.nn.relu)
# 第一个池化层
pool_layer_1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), padding="same")
# 第二个卷积层
conv_layer_2 = tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5), padding="valid", activation=tf.nn.relu)
# 第二个池化层
pool_layer_2 = tf.keras.layers.MaxPool2D(padding="same")
# 扁平化
flatten = tf.keras.layers.Flatten()
# 第一个全连接层
fc_layer_1 = tf.keras.layers.Dense(units=120, activation=tf.nn.relu)
# 第二个全连接层
fc_layer_2 = tf.keras.layers.Dense(units=84, activation=tf.nn.softmax)
# 输出层
output_layer = tf.keras.layers.Dense(units=10, activation=tf.nn.softmax)

卷积 Conv2D 的用法:

  • filters: 卷积核个数
  • kernel_size: 卷积核大小
  • strides = (1, 1): 步长
  • padding = “vaild”: valid 为舍弃, same 为补齐
  • activation = tf.nn.relu: 激活函数
  • data_format = None: 默认 channels_last

在这里插入图片描述

池化 AveragePooling2D 的用法:

  • pool_size: 池的大小
  • strides = (1, 1): 步长
  • padding = “vaild”: valid 为舍弃, same 为补齐
  • activation = tf.nn.relu: 激活函数
  • data_format = None: 默认 channels_last

全连接 Dense 的用法:

  • units: 输出的维度
  • activation: 激活函数
  • strides = (1, 1): 步长
  • padding = “vaild”: valid 为舍弃, same 为补齐
  • activation = tf.nn.relu: 激活函数
  • data_format = None: 默认 channels_last
# 模型实例化
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding='valid', activation=tf.nn.relu,
                           input_shape=(32, 32, 1)),
    # relu
    tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
    tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5), padding='valid', activation=tf.nn.relu),
    tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(units=120, activation=tf.nn.relu),

    tf.keras.layers.Dense(units=84, activation=tf.nn.relu),
    tf.keras.layers.Dense(units=10, activation=tf.nn.softmax)
])

# 模型展示
model.summary()

输出结果:

在这里插入图片描述

训练模型

# ------------------4. 训练模型------------------

# 设置超参数
num_epochs = 10  # 训练轮数
batch_size = 1000  # 批次大小
learning_rate = 0.001  # 学习率
# 定义优化器
adam_optimizer = tf.keras.optimizers.Adam(learning_rate)
model.compile(optimizer=adam_optimizer,loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=['accuracy'])

complie 的用法:

  • optimizer: 优化器
  • loss: 损失函数
  • metrics: 评价
with tf.Session() as sess:
    # 初始化所有变量
    init = tf.global_variables_initializer()
    sess.run(init)

    model.fit(x=X_train,y=y_train,batch_size=batch_size,epochs=num_epochs)

    # 评估指标
    print(model.evaluate(X_test, y_test))  # loss value & metrics values

输出结果:

在这里插入图片描述

fit 的用法:

  • x: 训练集
  • y: 测试集
  • batch_size: 批次大小
  • enpochs: 训练遍数

保存模型

# ------------------5. 保存模型------------------
model.save('lenet_model.h5')

流程总结

在这里插入图片描述

完整代码

from tensorflow.keras.datasets import mnist
from matplotlib import pyplot as plt
import numpy as np
import tensorflow as tf

# ------------------1. 读取 & 查看数据------------------

# 读取数据
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 数据集查看
print(X_train.shape)  # (60000, 28, 28)
print(y_train.shape)  # (60000,)
print(X_test.shape)  # (10000, 28, 28)
print(y_test.shape)  # (10000,)
print(type(X_train))  # <class 'numpy.ndarray'>

# 图片显示
plt.imshow(X_train[0], cmap="Greys")  # 查看第一张图片
plt.show()

# ------------------2. 数据预处理------------------

# 格式转换 (将图片从28*28扩充为32*32)
X_train = np.pad(X_train, ((0, 0), (2, 2), (2, 2)), "constant", constant_values=0)
X_test = np.pad(X_test, ((0, 0), (2, 2), (2, 2)), "constant", constant_values=0)
print(X_train.shape)  # (60000, 32, 32)
print(X_test.shape)  # (10000, 32, 32)

# 数据集格式变换
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)

# 数据正则化
X_train /= 255
X_test /= 255

# 数据维度转换
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)
print(X_train.shape)  # (60000, 32, 32, 1)
print(X_test.shape)  # (10000, 32, 32, 1)

# ------------------3. 模型建立------------------

# 第一个卷积层
conv_layer_1 = tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding="valid", activation=tf.nn.relu)
# 第一个池化层
pool_layer_1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), padding="same")
# 第二个卷积层
conv_layer_2 = tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5), padding="valid", activation=tf.nn.relu)
# 第二个池化层
pool_layer_2 = tf.keras.layers.MaxPool2D(padding="same")
# 扁平化
flatten = tf.keras.layers.Flatten()
# 第一个全连接层
fc_layer_1 = tf.keras.layers.Dense(units=120, activation=tf.nn.relu)
# 第二个全连接层
fc_layer_2 = tf.keras.layers.Dense(units=84, activation=tf.nn.softmax)
# 输出层
output_layer = tf.keras.layers.Dense(units=10, activation=tf.nn.softmax)


# 模型实例化
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5), padding='valid', activation=tf.nn.relu,
                           input_shape=(32, 32, 1)),
    # relu
    tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
    tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5), padding='valid', activation=tf.nn.relu),
    tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(units=120, activation=tf.nn.relu),

    tf.keras.layers.Dense(units=84, activation=tf.nn.relu),
    tf.keras.layers.Dense(units=10, activation=tf.nn.softmax)
])

# 模型展示
model.summary()

# ------------------4. 训练模型------------------

# 设置超参数
num_epochs = 10  # 训练轮数
batch_size = 1000  # 批次大小
learning_rate = 0.001  # 学习率

# 定义优化器
adam_optimizer = tf.keras.optimizers.Adam(learning_rate)
model.compile(optimizer=adam_optimizer,loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=['accuracy'])


with tf.Session() as sess:
    # 初始化所有变量
    init = tf.global_variables_initializer()
    sess.run(init)

    model.fit(x=X_train,y=y_train,batch_size=batch_size,epochs=num_epochs)

    # 评估指标
    print(model.evaluate(X_test, y_test))  # loss value & metrics values

# ------------------5. 保存模型------------------
model.save('lenet_model.h5')

到此这篇关于由浅入深学习TensorFlow MNIST 数据集的文章就介绍到这了,更多相关TensorFlow MNIST 数据集内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python+opencv实现动态物体识别

    python+opencv实现动态物体识别

    这篇文章主要为大家详细介绍了python+opencv实现动态物体识别,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • Python中re模块:匹配开头/结尾(^/$)

    Python中re模块:匹配开头/结尾(^/$)

    本文主要介绍了Python中re模块:匹配开头/结尾(^/$),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • 解决Jupyter NoteBook输出的图表太小看不清问题

    解决Jupyter NoteBook输出的图表太小看不清问题

    这篇文章主要介绍了解决Jupyter NoteBook输出的图表太小看不清问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • 基于Django的ModelForm组件(详解)

    基于Django的ModelForm组件(详解)

    下面小编就为大家分享一篇基于Django的ModelForm组件详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2017-12-12
  • 使用Python爬取Json数据的示例代码

    使用Python爬取Json数据的示例代码

    这篇文章主要介绍了使用Python爬取Json数据的示例代码,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • Python实现的远程文件自动打包并下载功能示例

    Python实现的远程文件自动打包并下载功能示例

    这篇文章主要介绍了Python实现的远程文件自动打包并下载功能,结合实例形式分析了Python使用spawn()方法执行ssh、scp 命令实现远程文件的相关操作技巧,需要的朋友可以参考下
    2019-07-07
  • Python Numpy中数据的常用保存与读取方法

    Python Numpy中数据的常用保存与读取方法

    这篇文章主要介绍了Python Numpy中数据的常用保存与读取方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04
  • python 读写文件包含多种编码格式的解决方式

    python 读写文件包含多种编码格式的解决方式

    今天小编就为大家分享一篇python 读写文件包含多种编码格式的解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python3转换html到pdf的不同解决方案

    Python3转换html到pdf的不同解决方案

    今天小编就为大家分享一篇关于Python3转换html到pdf的不同解决方案,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-03-03
  • Python强化练习之PyTorch opp算法实现月球登陆器

    Python强化练习之PyTorch opp算法实现月球登陆器

    在面向对象出现之前,我们采用的开发方法都是面向过程的编程(OPP)。面向过程的编程中最常用的一个分析方法是“功能分解”。我们会把用户需求先分解成模块,然后把模块分解成大的功能,再把大的功能分解成小的功能,整个需求就是按照这样的方式,最终分解成一个一个的函数
    2021-10-10

最新评论