PyTorch一小时掌握之神经网络分类篇

 更新时间:2021年09月07日 17:09:52   作者:我是小白呀  
这篇文章主要介绍了PyTorch一小时掌握之神经网络分类篇,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

概述

对于 MNIST 手写数据集的具体介绍, 我们在 TensorFlow 中已经详细描述过, 在这里就不多赘述. 有兴趣的同学可以去看看之前的文章: https://www.jb51.net/article/222183.htm

在上一节的内容里, 我们用 PyTorch 实现了回归任务, 在这一节里, 我们将使用 PyTorch 来解决分类任务.

导包

import torchvision
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

设置超参数

# 设置超参数
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)

读取数据

# 数据读取
train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_train, shuffle=True)
    
test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_test, shuffle=True)

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)

# 调试输出
print(example_targets)
print(example_data.shape)

输出结果:
tensor([7, 6, 7, 5, 6, 7, 8, 1, 1, 2, 4, 1, 0, 8, 4, 4, 4, 9, 8, 1, 3, 3, 8, 6,
2, 7, 5, 1, 6, 5, 6, 2, 9, 2, 8, 4, 9, 4, 8, 6, 7, 7, 9, 8, 4, 9, 5, 3,
1, 0, 9, 1, 7, 3, 7, 0, 9, 2, 5, 1, 8, 9, 3, 7, 8, 4, 1, 9, 0, 3, 1, 2,
3, 6, 2, 9, 9, 0, 3, 8, 3, 0, 8, 8, 5, 3, 8, 2, 8, 5, 5, 7, 1, 5, 5, 1,
0, 9, 7, 5, 2, 0, 7, 6, 1, 2, 2, 7, 5, 4, 7, 3, 0, 6, 7, 5, 1, 7, 6, 7,
2, 1, 9, 1, 9, 2, 7, 6, 8, 8, 8, 4, 6, 0, 0, 2, 3, 0, 1, 7, 8, 7, 4, 1,
3, 8, 3, 5, 5, 9, 6, 0, 5, 3, 3, 9, 4, 0, 1, 9, 9, 1, 5, 6, 2, 0, 4, 7,
3, 5, 8, 8, 2, 5, 9, 5, 0, 7, 8, 9, 3, 8, 5, 3, 2, 4, 4, 6, 3, 0, 8, 2,
7, 0, 5, 2, 0, 6, 2, 6, 3, 6, 6, 7, 9, 3, 4, 1, 6, 2, 8, 4, 7, 7, 2, 7,
4, 2, 4, 9, 7, 7, 5, 9, 1, 3, 0, 4, 4, 8, 9, 6, 6, 5, 3, 3, 2, 3, 9, 1,
1, 4, 4, 8, 1, 5, 1, 8, 8, 0, 7, 5, 8, 4, 0, 0, 0, 6, 3, 0, 9, 0, 6, 6,
9, 8, 1, 2, 3, 7, 6, 1, 5, 9, 3, 9, 3, 2, 5, 9, 9, 5, 4, 9, 3, 9, 6, 0,
3, 3, 8, 3, 1, 4, 1, 4, 7, 3, 1, 6, 8, 4, 7, 7, 3, 3, 6, 1, 3, 2, 3, 5,
9, 9, 9, 2, 9, 0, 2, 7, 0, 7, 5, 0, 2, 6, 7, 3, 7, 1, 4, 6, 4, 0, 0, 3,
2, 1, 9, 3, 5, 5, 1, 6, 4, 7, 4, 6, 4, 4, 9, 7, 4, 1, 5, 4, 8, 7, 5, 9,
2, 9, 4, 0, 8, 7, 3, 4, 2, 7, 9, 4, 4, 0, 1, 4, 1, 2, 5, 2, 8, 5, 3, 9,
1, 3, 5, 1, 9, 5, 3, 6, 8, 1, 7, 9, 9, 9, 9, 9, 2, 3, 5, 1, 4, 2, 3, 1,
1, 3, 8, 2, 8, 1, 9, 2, 9, 0, 7, 3, 5, 8, 3, 7, 8, 5, 6, 4, 1, 9, 7, 1,
7, 1, 1, 8, 6, 7, 5, 6, 7, 4, 9, 5, 8, 6, 5, 6, 8, 4, 1, 0, 9, 1, 4, 3,
5, 1, 8, 7, 5, 4, 6, 6, 0, 2, 4, 2, 9, 5, 9, 8, 1, 4, 8, 1, 1, 6, 7, 5,
9, 1, 1, 7, 8, 7, 5, 5, 2, 6, 5, 8, 1, 0, 7, 2, 2, 4, 3, 9, 7, 3, 5, 7,
6, 9, 5, 9, 6, 5, 7, 2, 3, 7, 2, 9, 7, 4, 8, 4, 9, 3, 8, 7, 5, 0, 0, 3,
4, 3, 3, 6, 0, 1, 7, 7, 4, 6, 3, 0, 8, 0, 9, 8, 2, 4, 2, 9, 4, 9, 9, 9,
7, 7, 6, 8, 2, 4, 9, 3, 0, 4, 4, 1, 5, 7, 7, 6, 9, 7, 0, 2, 4, 2, 1, 4,
7, 4, 5, 1, 4, 7, 3, 1, 7, 6, 9, 0, 0, 7, 3, 6, 3, 3, 6, 5, 8, 1, 7, 1,
6, 1, 2, 3, 1, 6, 8, 8, 7, 4, 3, 7, 7, 1, 8, 9, 2, 6, 6, 6, 2, 8, 8, 1,
6, 0, 3, 0, 5, 1, 3, 2, 4, 1, 5, 5, 7, 3, 5, 6, 2, 1, 8, 0, 2, 0, 8, 4,
4, 5, 0, 0, 1, 5, 0, 7, 4, 0, 9, 2, 5, 7, 4, 0, 3, 7, 0, 3, 5, 1, 0, 6,
4, 7, 6, 4, 7, 0, 0, 5, 8, 2, 0, 6, 2, 4, 2, 3, 2, 7, 7, 6, 9, 8, 5, 9,
7, 1, 3, 4, 3, 1, 8, 0, 3, 0, 7, 4, 9, 0, 8, 1, 5, 7, 3, 2, 2, 0, 7, 3,
1, 8, 8, 2, 2, 6, 2, 7, 6, 6, 9, 4, 9, 3, 7, 0, 4, 6, 1, 9, 7, 4, 4, 5,
8, 2, 3, 2, 4, 9, 1, 9, 6, 7, 1, 2, 1, 1, 2, 6, 9, 7, 1, 0, 1, 4, 2, 7,
7, 8, 3, 2, 8, 2, 7, 6, 1, 1, 9, 1, 0, 9, 1, 3, 9, 3, 7, 6, 5, 6, 2, 0,
0, 3, 9, 4, 7, 3, 2, 9, 0, 9, 5, 2, 2, 4, 1, 6, 3, 4, 0, 1, 6, 9, 1, 7,
0, 8, 0, 0, 9, 8, 5, 9, 4, 4, 7, 1, 9, 0, 0, 2, 4, 3, 5, 0, 4, 0, 1, 0,
5, 8, 1, 8, 3, 3, 2, 1, 2, 6, 8, 2, 5, 3, 7, 9, 3, 6, 2, 2, 6, 2, 7, 7,
6, 1, 8, 0, 3, 5, 7, 5, 0, 8, 6, 7, 2, 4, 1, 4, 3, 7, 7, 2, 9, 3, 5, 5,
9, 4, 8, 7, 6, 7, 4, 9, 2, 7, 7, 1, 0, 7, 2, 8, 0, 3, 5, 4, 5, 1, 5, 7,
6, 7, 3, 5, 3, 4, 5, 3, 4, 3, 2, 3, 1, 7, 4, 4, 8, 5, 5, 3, 2, 2, 9, 5,
8, 2, 0, 6, 0, 7, 9, 9, 6, 1, 6, 6, 2, 3, 7, 4, 7, 5, 2, 9, 4, 2, 9, 0,
8, 1, 7, 5, 5, 7, 0, 5, 2, 9, 5, 2, 3, 4, 6, 0, 0, 2, 9, 2, 0, 5, 4, 8,
9, 0, 9, 1, 3, 4, 1, 8, 0, 0, 4, 0, 8, 5, 9, 8])
torch.Size([1000, 1, 28, 28])

可视化展示

# 画图 (前6个)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()

输出结果:

在这里插入图片描述

建立模型

# 创建model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)

训练模型

# 训练
train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]


def train(epoch):
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
            train_losses.append(loss.item())
            train_counter.append(
                (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')


def test():
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

输出结果:
Train Epoch: 1 [0/60000 (0%)] Loss: 2.297471
Train Epoch: 1 [6400/60000 (11%)] Loss: 1.934886
Train Epoch: 1 [12800/60000 (21%)] Loss: 1.242982
Train Epoch: 1 [19200/60000 (32%)] Loss: 0.979296
Train Epoch: 1 [25600/60000 (43%)] Loss: 1.277279
Train Epoch: 1 [32000/60000 (53%)] Loss: 0.721533
Train Epoch: 1 [38400/60000 (64%)] Loss: 0.759595
Train Epoch: 1 [44800/60000 (75%)] Loss: 0.469635
Train Epoch: 1 [51200/60000 (85%)] Loss: 0.422614
Train Epoch: 1 [57600/60000 (96%)] Loss: 0.417603

Test set: Avg. loss: 0.1988, Accuracy: 9431/10000 (94%)

Train Epoch: 2 [0/60000 (0%)] Loss: 0.277207
Train Epoch: 2 [6400/60000 (11%)] Loss: 0.328862
Train Epoch: 2 [12800/60000 (21%)] Loss: 0.396312
Train Epoch: 2 [19200/60000 (32%)] Loss: 0.301772
Train Epoch: 2 [25600/60000 (43%)] Loss: 0.253600
Train Epoch: 2 [32000/60000 (53%)] Loss: 0.217821
Train Epoch: 2 [38400/60000 (64%)] Loss: 0.395815
Train Epoch: 2 [44800/60000 (75%)] Loss: 0.265737
Train Epoch: 2 [51200/60000 (85%)] Loss: 0.323627
Train Epoch: 2 [57600/60000 (96%)] Loss: 0.236692

Test set: Avg. loss: 0.1233, Accuracy: 9622/10000 (96%)

Train Epoch: 3 [0/60000 (0%)] Loss: 0.500148
Train Epoch: 3 [6400/60000 (11%)] Loss: 0.338118
Train Epoch: 3 [12800/60000 (21%)] Loss: 0.452308
Train Epoch: 3 [19200/60000 (32%)] Loss: 0.374940
Train Epoch: 3 [25600/60000 (43%)] Loss: 0.323300
Train Epoch: 3 [32000/60000 (53%)] Loss: 0.203830
Train Epoch: 3 [38400/60000 (64%)] Loss: 0.379557
Train Epoch: 3 [44800/60000 (75%)] Loss: 0.334822
Train Epoch: 3 [51200/60000 (85%)] Loss: 0.361676
Train Epoch: 3 [57600/60000 (96%)] Loss: 0.218833

Test set: Avg. loss: 0.0911, Accuracy: 9723/10000 (97%)

完整代码

import torchvision
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

# 设置超参数
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 100
random_seed = 1
torch.manual_seed(random_seed)

# 数据读取
train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_train, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_test, shuffle=True)

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)

# 调试输出
print(example_targets)
print(example_data.shape)

# 画图 (前6个)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()


# 创建model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)

# 训练
train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]


def train(epoch):
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
            train_losses.append(loss.item())
            train_counter.append(
                (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')


def test():
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

到此这篇关于PyTorch一小时掌握之神经网络分类篇的文章就介绍到这了,更多相关PyTorch神经网络分类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 浅谈python多线程和队列管理shell程序

    浅谈python多线程和队列管理shell程序

    这篇文章主要给大家简单介绍了python多线程和队列管理shell程序的方法和简单示例,有需要的小伙伴可以参考下。
    2015-08-08
  • Python如何求取逆序数

    Python如何求取逆序数

    这篇文章主要介绍了Python如何求取逆序数问题,具有很好的参考价值,希望大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • 基于pytorch实现对图片进行数据增强

    基于pytorch实现对图片进行数据增强

    图像数据增强是一种在训练机器学习和深度学习模型时常用的策略,尤其是在计算机视觉领域,具体而言,它通过创建和原始图像稍有不同的新图像来扩大训练集,本文给大家介绍了如何基于pytorch实现对图片进行数据增强,需要的朋友可以参考下
    2024-01-01
  • Python Asyncio调度原理详情

    Python Asyncio调度原理详情

    这篇文章主要介绍了Python Asyncio调度原理详情,Python.Asyncio是一个大而全的库,它包括很多功能,而跟核心调度相关的逻辑除了三种可等待对象外,还有其它一些功能,它们分别位于runners.py,base_event.py,event.py三个文件中
    2022-06-06
  • 利用Python进行音频信号处理和音乐生成的代码示例

    利用Python进行音频信号处理和音乐生成的代码示例

    随着计算机技术的快速发展,音频信号处理和音乐生成逐渐成为了Python程序员们的关注点,本文将介绍如何利用Python进行音频信号处理和音乐生成,包括基本概念、常用库的使用以及实际的代码示例,需要的朋友可以参考下
    2024-06-06
  • 利用Python实现批量打包程序的工具

    利用Python实现批量打包程序的工具

    auto-py-to-exe与pyinstaller都无法直接一次性打包多个程序,想打包多个程序需要重新操作一遍。所以本文将用Python实现批量打包程序的工具,感兴趣的可以了解一下
    2022-07-07
  • python可视化分析绘制散点图和边界气泡图

    python可视化分析绘制散点图和边界气泡图

    这篇文章主要介绍了python可视化分析绘制散点图和边界气泡图,python绘制散点图,展现两个变量间的关系,当数据包含多组时,使用不同颜色和形状区分
    2022-06-06
  • python分治法求二维数组局部峰值方法

    python分治法求二维数组局部峰值方法

    下面小编就为大家分享一篇python分治法求二维数组局部峰值方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • django中的HTML控件及参数传递方法

    django中的HTML控件及参数传递方法

    下面小编就为大家分享一篇django中的HTML控件及参数传递方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-03-03
  • python爬虫爬取监控教务系统的思路详解

    python爬虫爬取监控教务系统的思路详解

    这篇文章主要介绍了python爬虫监控教务系统,主要实现思路是对已有的成绩进行处理,变为list集合,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下
    2020-01-01

最新评论