TensorFlow2基本操作之 张量排序 填充与复制 查找与替换

 更新时间:2021年09月08日 10:54:06   作者:我是小白呀  
这篇文章主要介绍了TensorFlow2基本操作之 张量排序 填充与复制 查找与替换,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

张量排序

在这里插入图片描述

tf.sort

tf.sort函数可以帮我们对张量进行排序.

格式:

tf.sort(
    values, axis=-1, direction='ASCENDING', name=None
)

参数:

  • values: 要进行排序的张量
  • axis: 操作维度
  • direction: 正序或者倒序
  • name: 数据名称

例子:

# 创建张量0~9, 并打乱顺序
a = tf.random.shuffle(tf.range(10))
print(a)

# 从小到大
b = tf.sort(a)  # direction="ASCENDING"
print(b)

# 从大到小
c = tf.sort(a, direction="DESCENDING")
print(c)

输出结果:

tf.Tensor([6 3 7 5 4 0 2 9 8 1], shape=(10,), dtype=int32)
tf.Tensor([0 1 2 3 4 5 6 7 8 9], shape=(10,), dtype=int32)
tf.Tensor([9 8 7 6 5 4 3 2 1 0], shape=(10,), dtype=int32)

tf.argsort

tf.argsort返回张量的索引排序, 沿给的轴排序.

格式:

tf.argsort(
    values, axis=-1, direction='ASCENDING', stable=False, name=None
)

参数:

  • 要进行排序的张量
  • axis: 操作维度
  • direction: 正序或者倒序
  • stable: 如果为 True, 则原始张量中的相等元素将不会按返回的顺序重新排序
  • name: 数据名称

例子:

# 创建张量0~9, 并打乱顺序
a = tf.random.shuffle(tf.range(10))
print(a)

# 从小到大
b = tf.argsort (a)
print(b)

# 从大到小
c = tf.argsort (a, direction="DESCENDING")
print(c)

输出结果:

tf.Tensor([9 4 3 1 2 6 0 5 7 8], shape=(10,), dtype=int32)
tf.Tensor([6 3 4 2 1 7 5 8 9 0], shape=(10,), dtype=int32)
tf.Tensor([0 9 8 5 7 1 2 4 3 6], shape=(10,), dtype=int32)

tf.math.top_k

tf.math.top_k可以帮助我们查找最后一个维度的 k 个最大条目的值和索引.

格式:

tf.math.top_k(
    input, k=1, sorted=True, name=None
)

参数:

  • input: 传入张量
  • k=1: 前 k 位
  • sorted: 是否排序
  • name: 数据名称

例子:

# 创建张量0~9, 并打乱顺序, 形状为 3*3
a = tf.reshape(tf.random.shuffle(tf.range(9)), [3, 3])
print(a)

# 取top2
b = tf.math.top_k(a, 2)
print(b)

输出结果:

tf.Tensor(
[[2 1 4]
[5 7 0]
[8 6 3]], shape=(3, 3), dtype=int32)
TopKV2(values=<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[4, 2],
[7, 5],
[8, 6]])>, indices=<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[2, 0],
[1, 0],
[0, 1]])>)

填充与复制

tf.pad

tf.pad可以帮我们对一个 tensor 四周进行填充.

在这里插入图片描述

格式:

tf.pad(
    tensor, paddings, mode='CONSTANT', constant_values=0, name=None
)

参数:

  • tensor: 传入的张量
  • paddings: 要扩展的维度
  • mode: 模式, 默认为 “CONSTANT”
  • constant_value: 在 “CONSTANT” 模式下, 要使用的标量填充值 (必须与张量类型相同)
  • name: 数据名称

例子:

# pad
a = tf.reshape(tf.range(9), [3, 3])
print(a)

# 上下左右填充一圈0
b = tf.pad(a, [[1, 1], [1, 1]])
print(b)

输出结果:

tf.Tensor(
[[0 1 2]
[3 4 5]
[6 7 8]], shape=(3, 3), dtype=int32)
tf.Tensor(
[[0 0 0 0 0]
[0 0 1 2 0]
[0 3 4 5 0]
[0 6 7 8 0]
[0 0 0 0 0]], shape=(5, 5), dtype=int32)

tf.tile

tf.tile可以帮助我们实现 tensor 的复制.

格式:

tf.tile(
    input, multiples, name=None
)

参数:

  • input: 传入的张量
  • multiples: 复制的次数
  • name: 数据名称

例子:

# tile
a = tf.reshape(tf.range(9), [3, 3])
print(a)

b = tf.tile(a, [2, 2])
print(b)

输出结果:

tf.Tensor(
[[0 1 2]
[3 4 5]
[6 7 8]], shape=(3, 3), dtype=int32)
tf.Tensor(
[[0 1 2 0 1 2]
[3 4 5 3 4 5]
[6 7 8 6 7 8]
[0 1 2 0 1 2]
[3 4 5 3 4 5]
[6 7 8 6 7 8]], shape=(6, 6), dtype=int32)

查找与替换

在这里插入图片描述

tf.where (第一种)

返回元素为 True 的位置.

格式:

tf.where(
    condition, name=None
)

参数:

  • condition: 判断条件
  • name: 数据名称

例子:

# 第一种用法(单参数)
mask = tf.constant([[True, True, True], [False, True, True], [True, False, False]])
print(mask)

indices = tf.where(mask)
print(indices)

输出结果:

tf.Tensor(
[[ True True True]
[False True True]
[ True False False]], shape=(3, 3), dtype=bool)
tf.Tensor(
[[0 0]
[0 1]
[0 2]
[1 1]
[1 2]
[2 0]], shape=(6, 2), dtype=int64)

tf.where (第二种)

类似三元运算符的用法.

格式:

tf.where(
    condition, x=None, y=None, name=None
)

参数:

  • condition: 判断条件
  • x: 如果条件为 True 赋值
  • y: 如果条件为 False 赋值
  • name: 数据名称

例子:

# 第二种用法(三个参数)
zeros = tf.zeros([3, 3])
print(zeros)

ones = tf.ones([3, 3])
print(ones)

mask = tf.constant([[True, True, True], [False, True, True], [True, False, False]])
print(mask)

result = tf.where(mask, zeros, ones)
print(result)

输出结果:

tf.Tensor(
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[ True True True]
[False True True]
[ True False False]], shape=(3, 3), dtype=bool)
tf.Tensor(
[[0. 0. 0.]
[1. 0. 0.]
[0. 1. 1.]], shape=(3, 3), dtype=float32)

tf.scatter_nd

使用索引更新张量.

在这里插入图片描述

格式:

tf.scatter_nd(
    indices, updates, shape, name=None
)

参数:

  • indices: 索引
  • updates: 更新的值
  • shape: 形状
  • name: 数据名称

例子:

# scatter_nd
indices = tf.constant([[4], [3], [1], [7]])
print(indices)

updates = tf.constant([9, 10, 11, 12])
print(updates)

shape = tf.constant([8])
print(shape)

result = tf.scatter_nd(indices, updates, shape)
print(result)

输出结果:

tf.Tensor(
[[4]
[3]
[1]
[7]], shape=(4, 1), dtype=int32)
tf.Tensor([ 9 10 11 12], shape=(4,), dtype=int32)
tf.Tensor([8], shape=(1,), dtype=int32)
tf.Tensor([ 0 11 0 10 9 0 0 12], shape=(8,), dtype=int32)

到此这篇关于TensorFlow2基本操作之 张量排序 填充与复制 查找与替换的文章就介绍到这了,更多相关TensorFlow2基本操作内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python中xlutils库用法浅析

    python中xlutils库用法浅析

    在本篇文章里小编给大家整理了一篇关于python中xluntils库用法浅析的内容,有需要的朋友们可以学习下。
    2020-12-12
  • PyQt5 PySide2 触摸测试功能的实现代码

    PyQt5 PySide2 触摸测试功能的实现代码

    这篇文章主要介绍了PyQt5 PySide2 触摸测试功能的实现,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-04-04
  • python3 scrapy框架的执行流程

    python3 scrapy框架的执行流程

    Scrapy的安装有多种方式,它支持Python2.7版本及以上或Python3.3版本及以上。下面说明python3 scrapy框架的常用命令及框架执行流程,感兴趣的朋友一起看看吧
    2021-07-07
  • 利用插件和python实现Excel转json的两种办法

    利用插件和python实现Excel转json的两种办法

    转换Excel表格到JSON格式有很多方法,下面这篇文章主要给大家介绍了关于利用插件和python实现Excel转json的两种办法,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2023-11-11
  • python关于矩阵重复赋值覆盖问题的解决方法

    python关于矩阵重复赋值覆盖问题的解决方法

    这篇文章主要介绍了python关于矩阵重复赋值覆盖问题的解决方法,涉及Python深拷贝与浅拷贝相关操作与使用技巧,需要的朋友可以参考下
    2019-07-07
  • python中的闭包函数

    python中的闭包函数

    这篇文章主要介绍了python中的闭包函数,非常不错,具有参考借鉴价值,需要的朋友可以参考下
    2018-02-02
  • python中的for循环

    python中的for循环

    Python for循环可以遍历任何序列的项目,如一个列表或者一个字符串。这篇文章主要介绍了python的for循环,需要的朋友可以参考下
    2018-09-09
  • numpy基础教程之np.linalg

    numpy基础教程之np.linalg

    这篇文章主要给大家介绍了关于numpy基础教程之np.linalg的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-02-02
  • 如何利用Python给自己的头像加一个小国旗(小月饼)

    如何利用Python给自己的头像加一个小国旗(小月饼)

    这篇文章主要给大家介绍了关于如何利用Python给自己的头像加一个小国旗(小月饼)的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • PyCharm虚拟环境中使用pip指令

    PyCharm虚拟环境中使用pip指令

    本文主要介绍了PyCharm虚拟环境中使用pip指令,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-06-06

最新评论