java多线程使用mdc追踪日志方式
多线程使用mdc追踪日志
背景
多线程情况下,子线程的sl4j打印日志缺少traceId等信息,导致定位问题不方便
解决方案
- 打印日志时添加用户ID、trackId等信息,缺点是每个日志都要手动添加
- 使用mdc直接拷贝父线程值
实现
// 新建线程时: Map<String, String> mdcContextMap = MDC.getCopyOfContextMap() // 子线程运行时: if(null != mdcContextMap){ MDC.setContextMap(mdcContextMap); } // 销毁线程时 MDC.clear();
参考
import org.slf4j.MDC; import java.util.Map; import java.util.concurrent.*; /** * A SLF4J MDC-compatible {@link ThreadPoolExecutor}. * <p/> * In general, MDC is used to store diagnostic information (e.g. a user's session id) in per-thread variables, to facilitate * logging. However, although MDC data is passed to thread children, this doesn't work when threads are reused in a * thread pool. This is a drop-in replacement for {@link ThreadPoolExecutor} sets MDC data before each task appropriately. * <p/> * Created by jlevy. * Date: 6/14/13 */ public class MdcThreadPoolExecutor extends ThreadPoolExecutor { final private boolean useFixedContext; final private Map<String, Object> fixedContext; /** * Pool where task threads take MDC from the submitting thread. */ public static MdcThreadPoolExecutor newWithInheritedMdc(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { return new MdcThreadPoolExecutor(null, corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); } /** * Pool where task threads take fixed MDC from the thread that creates the pool. */ @SuppressWarnings("unchecked") public static MdcThreadPoolExecutor newWithCurrentMdc(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { return new MdcThreadPoolExecutor(MDC.getCopyOfContextMap(), corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); } /** * Pool where task threads always have a specified, fixed MDC. */ public static MdcThreadPoolExecutor newWithFixedMdc(Map<String, Object> fixedContext, int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { return new MdcThreadPoolExecutor(fixedContext, corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); } private MdcThreadPoolExecutor(Map<String, Object> fixedContext, int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue); this.fixedContext = fixedContext; useFixedContext = (fixedContext != null); } @SuppressWarnings("unchecked") private Map<String, Object> getContextForTask() { return useFixedContext ? fixedContext : MDC.getCopyOfContextMap(); } /** * All executions will have MDC injected. {@code ThreadPoolExecutor}'s submission methods ({@code submit()} etc.) * all delegate to this. */ @Override public void execute(Runnable command) { super.execute(wrap(command, getContextForTask())); } public static Runnable wrap(final Runnable runnable, final Map<String, Object> context) { return new Runnable() { @Override public void run() { Map previous = MDC.getCopyOfContextMap(); if (context == null) { MDC.clear(); } else { MDC.setContextMap(context); } try { runnable.run(); } finally { if (previous == null) { MDC.clear(); } else { MDC.setContextMap(previous); } } } }; } }
多线程日志追踪
主要目的是记录工作中的一些编程思想和细节,以便后来查阅。
1.问题描述
由于项目中设计高并发内容,涉及到一个线程创建多个子线程的情况。 那么,如何跟踪日志,识别子线程是由哪个主线程创建的,属于哪个request请求。
例如, 在现有项目中,一个设备信息上传的请求(包括基本数据和异常数据两种数据),然后主线程创建两个子线程,来处理基本数据和异常数据。
简化代码如下:
public class mainApp { public static void main(String[] args) { Thread t = new Thread(new Runnable() { @Override public void run() { //接收到一个request System.out.println("[Thread-"+ Thread.currentThread().getId() +"]开始发起请求"); String[] data = {"异常数据","基本数据"}; //创建子线程1,处理异常数据 MThread mThread1 = new MThread(new Runnable() { @Override public void run() { System.out.println("[Thread-"+ Thread.currentThread().getId() +"]处理了" + data[0]); } }); 创建子线程2,处理普通数据 MThread mThread2 = new MThread(new Runnable() { @Override public void run() { System.out.println("[Thread-"+ Thread.currentThread().getId() +"]处理了" + data[1]); } }); new Thread(mThread1).start(); new Thread(mThread2).start(); } }); t.start(); } } class MThread implements Runnable { private Runnable r; public MThread(Runnable r) { this.r = r; } @Override public void run() { r.run(); } }
运行结果如下:
一个请求有三个线程,如果有多个请求,运行结果如下:
从日志中无法看出他们之间的所属关系(判断不出来他们是否是处理同一个request请求的)。如果某一个线程出现问题,我们也很难快速定位是哪个请求的处理结果。
2. 代理实现日志追踪
因此,我们使用MDC来在日志中增加traceId(同一个请求的多个线程拥有同一个traceId)。
思路如下:
1. 在request进来的时候, 利用AOP为每个request创建一个traceId(保证每个request的traceId不同, 同一个request的traceId相同)
2. 创建子线程的时候, 将traceId通过动态代理的方式,传递到子线程中
public class mainApp { public static void main(String[] args) { Runnable runnable = new Runnable() { @Override public void run() { //AOP 生成一个traceId MDC.put("traceId", UUID.randomUUID().toString().replace("-", "")); //接收到一个request System.out.println("[Thread-"+ Thread.currentThread().getId() +"]traceId["+ MDC.get("traceId") +"]开始发起请求"); String[] data = {"异常数据","基本数据"}; MThread mThread1 = new MThread(new Runnable() { @Override public void run() { System.out.println("[Thread-"+ Thread.currentThread().getId() +"]traceId["+ MDC.get("traceId") +"]处理了" + data[0]); } }, MDC.getCopyOfContextMap()); MThread mThread2 = new MThread(new Runnable() { @Override public void run() { System.out.println("[Thread-"+ Thread.currentThread().getId() +"]traceId["+ MDC.get("traceId") +"]处理了" + data[1]); } }, MDC.getCopyOfContextMap()); new Thread(mThread1).start(); new Thread(mThread2).start(); } }; new Thread(runnable).start(); new Thread(runnable).start(); } } class MThread implements Runnable { private Runnable r; public MThread(Runnable r, Map<String, String> parentThreadMap) { LogProxy logProxy = new LogProxy(r, parentThreadMap); Runnable rProxy = (Runnable) Proxy.newProxyInstance(r.getClass().getClassLoader(), r.getClass().getInterfaces(), logProxy); this.r = rProxy; } @Override public void run() { r.run(); } } //日志代理 class LogProxy implements InvocationHandler { private Runnable r; private Map<String, String> parentThreadMap; public LogProxy(Runnable r, Map<String, String> parentThreadMap) { this.r = r; this.parentThreadMap = parentThreadMap; } @Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { if (method.getName().equals("run")) { MDC.setContextMap(parentThreadMap); } return method.invoke(r, args); } }
运行结果如下:
两个请求, 同一个请求的traceId相同,不同请求的traceId不同。 完美实现多线程的日志追踪。
实际WEB项目中,只需要在logback日志配置文件中,
logging.pattern.console参数增[%X{traceId}]即可在LOGGER日志中打印traceId的信息。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Spring Data JPA 注解Entity关联关系使用详解
这篇文章主要为大家介绍了Spring Data JPA 注解Entity关联关系使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪2022-09-09Java 后端开发中Tomcat服务器运行不了的五种解决方案
tomcat是在使用Java编程语言开发服务端技术使用最广泛的服务器之一,但经常在开发项目的时候会出现运行不了的情况,这里总结出几种能解决的办法2021-10-10Mybatis返回int或者Integer类型报错的解决办法
这篇文章主要介绍了Mybatis返回int或者Integer类型报错的解决办法,非常不错,具有参考借鉴价值,需要的朋友可以参考下2016-12-12
最新评论