Python机器学习从ResNet到DenseNet示例详解

 更新时间:2021年10月11日 10:42:33   作者:Supre_yuan  
ResNet极大地改变了如何参数化深层网络中函数的观点。稠密连接网络(DenseNet)在某种程度上是ResNet的逻辑扩展。让我们先从数学上了解下

从ResNet到DenseNet

在这里插入图片描述

在这里插入图片描述

上图中,左边是ResNet,右边是DenseNet,它们在跨层上的主要区别是:使用相加和使用连结。

在这里插入图片描述

最后,将这些展开式结合到多层感知机中,再次减少特征的数量。实现起来非常简单:我们不需要添加术语,而是将它们连接起来。DenseNet这个名字由变量之间的“稠密连接”而得来,最后一层与之前的所有层紧密相连。稠密连接如下图所示:

在这里插入图片描述

稠密网络主要由2部分构成:稠密块(dense block)和过渡层(trainsition block)。

前者定义如何连接输入和输出,而后者则控制通道数量,使其不会太复杂。

稠密块体

DenseNet使用了ResNet改良版的“批量归一化、激活和卷积”结构。我们首先实现下这个结构。

import torch
from torch import nn
from d2l import torch as d2l

def conv_block(input_channels, num_channels):
	return nn.Sequential(
		nn.BatchNorm2d(input_channels), nn.ReLU(),
		nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1)
	)

一个稠密块由多个卷积块组成,每个卷积块使用相同矢量的输出通道。然而,在前向传播中,我们将每个卷积块的输入和输出在通道维上连结。

class DenseBlock(nn.Module):
	def __init__(self, num_convs, input_channels, num_channels):
		super(Denseblock, self).__init__()
		layer = []
		for i in range(num_convs):
			layer.append(conv_block(num_channels * i + input_channels, num_channels))
		self.net = nn.Sequential(*layer)

	def forward(self, X):
		for blk in self.net:
			Y = blk(X)
			# 连结通道维度上的每个块的输入和输出
			X = torch.cat((X, Y), dim=1)
		return X

在下面的例子中,我们定义一个有2个输出通道数为10的DenseBlock。使用通道数为3的输入时,我们会得到通道数为 3 + 2 × 10 = 23 3+2\times10=23 3+2×10=23的输出。卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。

blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape
torch.Size([4, 23, 8, 8])

过渡层

由于每个稠密快都会带来通道数的增加,使用过多则会过于复杂化模型。而过渡层可以用来控制模型复杂度。它通过 1×1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。

def transition_block(input_channels, num_channels):
	return nn.Sequential(
		nn.BatchNorm2d(input_channels), nn.ReLU(),
		nn.Conv2d(input_channels, num_channels, kernel_size=1)
		nn.AvgPool2d(kernel_size=2, stride=2)
	)

对上一个例子中稠密块的输出使用通道数为10的过渡层。此时输出的通道数减为10,高和宽均减半。

blk = transition_block(23, 10)
blk(Y).shape
torch.Size([4, 10, 4, 4])

DenseNet模型

我们来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大聚集层。

b1 = nn.Sequential(
	nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
	nn.BatchNorm2d(64), nn.ReLU(),
	nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)

接下来,类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块。与ResNet类似,我们可以设置每个稠密块使用多少个卷积层。这里我们设成4,从而与之前的ResNet-18保持一致。稠密块里的卷积层通道数(即增长率)设置为32,所以每个稠密块将增加128个通道。

在每个模块之间,ResNet通过步幅为2的残差块减小高和宽,而DenseNet则使用过渡层来减半高和宽,并减半通道数。

# 'num_channels'为当前通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
	blks.append(DenseBlock(num_convs, num_channels, growth_rate))
	# 上一个稠密块的输出通道数
	num_channels += num_convs * growth_rate
	# 在稠密块之间添加一个转换层,使通道数量减半
	if i != len(num_convs_in_dense_blocks) - 1:
		blks.append(transition_block(num_channels, num_channels // 2))
		num_channels = num_channels // 2

与ResNet类似,最后接上全局汇聚层和全连接层来输出结果。

net = nn.Sequential(
	b1, *blks,
	nn.BatchNorm2d(num_channels), nn.ReLU(),
	nn.AdaptiveMaxPool2d((1, 1)),
	nn.Flatten(),
	nn.Linear(num_channels, 10)
)

训练模型

由于这里使用了比较深的网络,本节里我们将输入高和宽从224降到96来简化计算。

lr, num_epochs, batch_size = 0.1, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.154, train acc 0.943, test acc 0.880
5506.9 examples/sec on cuda:0

在这里插入图片描述

以上就是Python机器学习从ResNet到DenseNet示例详解的详细内容,更多关于Python机器学习ResNet到DenseNet的资料请关注脚本之家其它相关文章!

相关文章

  • python snownlp情感分析简易demo(分享)

    python snownlp情感分析简易demo(分享)

    下面小编就为大家带来一篇python snownlp情感分析简易demo(分享)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • Python3 解释器的实现

    Python3 解释器的实现

    在本篇内容中小编给大家总结了关于Python3解释器的用法以及相关知识点,需要的朋友们学习下。
    2021-06-06
  • python 内置函数汇总详解

    python 内置函数汇总详解

    这篇文章主要介绍了python 内置函数汇总详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • 利用Python和C++实现解析gltf文件

    利用Python和C++实现解析gltf文件

    gltf是类似于stl、obj、ply等常见的3D对象存储格式,它被设计出来是为了便于渲染的数据转换和传输,本文为大家介绍了使用Python和C++解析gltf文件的方法,感兴趣的可以了解下
    2023-09-09
  • pycharm自定义TODO类注释以及高亮颜色的设置方法

    pycharm自定义TODO类注释以及高亮颜色的设置方法

    这篇文章主要介绍了pycharm自定义TODO类注释以及高亮颜色的设置方法,文中通过图文结合的方式给大家介绍的非常详细,具有一定的参考价值,需要的朋友可以参考下
    2024-03-03
  • python简单判断序列是否为空的方法

    python简单判断序列是否为空的方法

    这篇文章主要介绍了python简单判断序列是否为空的方法,可通过if语句实现简单的判断功能,需要的朋友可以参考下
    2015-06-06
  • 更换Django默认的模板引擎为jinja2的实现方法

    更换Django默认的模板引擎为jinja2的实现方法

    今天小编就为大家分享一篇更换Django默认的模板引擎为jinja2的实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • 关于Python字典的底层实现原理

    关于Python字典的底层实现原理

    这篇文章主要介绍了关于Python字典的底层实现原理,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • python自动翻译实现方法

    python自动翻译实现方法

    这篇文章主要介绍了python自动翻译实现方法,涉及Python调用百度接口及数据库操作的相关技巧,需要的朋友可以参考下
    2016-05-05
  • 在Django的URLconf中使用多个视图前缀的方法

    在Django的URLconf中使用多个视图前缀的方法

    这篇文章主要介绍了在Django的URLconf中使用多个视图前缀的方法,Django是Python中最为著名的遵循MVC结构的开发框架,需要的朋友可以参考下
    2015-07-07

最新评论