python进阶TensorFlow神经网络拟合线性及非线性函数

 更新时间:2021年10月16日 11:58:47   作者:_睿智_  
这篇文章是python进阶学习主要介绍了TensorFlow神经网络拟合线性及非线性函数原理及示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助

一、拟合线性函数

学习率0.03,训练1000次:

学习率0.05,训练1000次:

学习率0.1,训练1000次:

可以发现,学习率为0.05时的训练效果是最好的。

生成随机坐标

1、生成x坐标

2、生成随机干扰

3、计算得到y坐标

4、画点

# 生成随机点
def Produce_Random_Data():
    global x_data, y_data
    # 生成x坐标
    x_data = np.random.rand(100)
     # 生成随机干扰
    noise = np.random.normal(0, 0.01, x_data.shape)
    #                       均值 标准差 输出的形状
     # 计算y坐标
    y_data = 0.2 * x_data + 0.3 + noise
     # 画点
    plt.scatter(x_data, y_data)

神经网络拟合

1、创建神经网络

2、设置优化器与损失函数

3、训练(根据已有数据)

4、预测(给定横坐标,预测纵坐标)

# 创建神经网络(训练及预测)
def Neural_Network():
    # 1 创建神经网络
    model = tf.keras.Sequential()
    # 为神经网络添加层
    model.add(tf.keras.layers.Dense(units=1, input_dim=1))
#                             隐藏层 神经元个数 输入神经元个数
    # 2 设置优化器与损失函数
    model.compile(optimizer=SGD(0.05), loss='mse')
#                 优化器     学习率0.05  损失函数
# SGD:随机梯度下降法
# mse:均方误差
    # 3 训练
    for i in range(1000):
        # 训练数据并返回损失
        loss = model.train_on_batch(x_data, y_data)
        # print(loss)
     # 4 预测
    y_pred = model.predict(x_data)
     # 5 显示预测结果(拟合线)
    plt.plot(x_data, y_pred, 'r-', lw=3)    #lw:线条粗细

代码

# 拟合线性函数
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.optimizers import SGD 
# 生成随机点
def Produce_Random_Data():
    global x_data, y_data
    # 生成x坐标
    x_data = np.random.rand(100) 
    # 生成随机干扰
    noise = np.random.normal(0, 0.01, x_data.shape)
    #                       均值 标准差 输出的形状
     # 计算y坐标
    y_data = 0.2 * x_data + 0.3 + noise 
    # 画点
    plt.scatter(x_data, y_data)
  
# 创建神经网络(训练及预测)
def Neural_Network():
    # 1 创建神经网络
    model = tf.keras.Sequential()
    # 为神经网络添加层
    model.add(tf.keras.layers.Dense(units=1, input_dim=1))
#                             隐藏层 神经元个数 输入神经元个数
    # 2 设置优化器与损失函数
    model.compile(optimizer=SGD(0.05), loss='mse')
#                 优化器     学习率0.05  损失函数
# SGD:随机梯度下降法
# mse:均方误差
     # 3 训练
    for i in range(1000):
        # 训练数据并返回损失
        loss = model.train_on_batch(x_data, y_data)
        # print(loss)
     # 4 预测
    y_pred = model.predict(x_data)
 
    # 5 显示预测结果(拟合线)
    plt.plot(x_data, y_pred, 'r-', lw=3)    #lw:线条粗细 
# 1、生成随机点
Produce_Random_Data()
 
# 2、神经网络训练与预测
Neural_Network()
 
plt.show()

二、拟合非线性函数

第一层10个神经元:

第一层5个神经元:

我感觉第一层5个神经元反而训练效果比10个的好。。。

生成二次随机点

步骤:

1、生成x坐标

2、生成随机干扰

3、计算y坐标

4、画散点图

# 生成随机点
def Produce_Random_Data():
    global x_data, y_data
    # 生成x坐标
    x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
    #                                       增加一个维度
     # 生成噪声
    noise = np.random.normal(0, 0.02, x_data.shape)
    #                       均值 方差 
    # 计算y坐标
    y_data = np.square(x_data) + noise 
    # 画散点图
    plt.scatter(x_data, y_data)

神经网络拟合

步骤:

1、创建神经网络

2、设置优化器及损失函数

3、训练(根据已有数据)

4、预测(给定横坐标,预测纵坐标)

5、画图

# 神经网络拟合(训练及预测)
def Neural_Network():
    # 1 创建神经网络
    model = tf.keras.Sequential()
    # 添加层
    # 注:input_dim(输入神经元个数)只需要在输入层重视设置,后面的网络可以自动推断出该层的对应输入
    model.add(tf.keras.layers.Dense(units=5,  input_dim=1, activation='tanh'))
#                                   神经元个数 输入神经元个数 激活函数
    model.add(tf.keras.layers.Dense(units=1, activation='tanh')) 
    # 2 设置优化器和损失函数
    model.compile(optimizer=SGD(0.3), loss='mse')
#                 优化器     学习率     损失函数(均方误差) 
    # 3 训练
    for i in range(3000):
        # 训练一次数据,返回loss
        loss = model.train_on_batch(x_data, y_data) 
    # 4 预测
    y_pred = model.predict(x_data) 
    # 5 画图
    plt.plot(x_data, y_pred, 'r-', lw=5)

代码

# 拟合非线性函数
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.optimizers import SGD 
# 生成随机点
def Produce_Random_Data():
    global x_data, y_data
    # 生成x坐标
    x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
    #                                       增加一个维度 
    # 生成噪声
    noise = np.random.normal(0, 0.02, x_data.shape)
    #                       均值 方差 
    # 计算y坐标
    y_data = np.square(x_data) + noise 
    # 画散点图
    plt.scatter(x_data, y_data) 
# 神经网络拟合(训练及预测)
def Neural_Network():
    # 1 创建神经网络
    model = tf.keras.Sequential() 
    # 添加层
    # 注:input_dim(输入神经元个数)只需要在输入层重视设置,后面的网络可以自动推断出该层的对应输入
    model.add(tf.keras.layers.Dense(units=5, input_dim=1, activation='tanh'))
#                                   神经元个数  输入神经元个数 激活函数
    model.add(tf.keras.layers.Dense(units=1, activation='tanh'))
    #                               输出神经元个数 
    # 2 设置优化器和损失函数
    model.compile(optimizer=SGD(0.3), loss='mse')
#                 优化器     学习率     损失函数(均方误差) 
    # 3 训练
    for i in range(3000):
        # 训练一次数据,返回loss
        loss = model.train_on_batch(x_data, y_data) 
    # 4 预测
    y_pred = model.predict(x_data)
    # 5 画图
    plt.plot(x_data, y_pred, 'r-', lw=5)
# 1、生成随机点
Produce_Random_Data()
 
# 2、神经网络训练与预测
Neural_Network()
 
plt.show()

以上就是python进阶TensorFlow神经网络拟合线性及非线性函数的详细内容,更多关于TensorFlow神经网络拟合线性及非线性函数的资料请关注脚本之家其它相关文章!

相关文章

  • opencv python在视屏上截图功能的实现

    opencv python在视屏上截图功能的实现

    OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。这篇文章主要介绍了opencv python在视屏上截图,需要的朋友可以参考下
    2020-03-03
  • python实现简单聊天应用 python群聊和点对点均实现

    python实现简单聊天应用 python群聊和点对点均实现

    这篇文章主要为大家详细介绍了python实现简单聊天应用,python群聊和点对点均实现,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-09-09
  • Python WSGI的深入理解

    Python WSGI的深入理解

    这篇文章主要给大家介绍了关于Python WSGI的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-08-08
  • Python 图形绘制详细代码(一)

    Python 图形绘制详细代码(一)

    这篇文章主要介绍了Python 图形绘制详细代码,文章主要从最简单图像的开始,在同一图上绘制两条或多条线一些简单操作,想了解的小伙伴可以学习一下,希望对你的学习有所帮助
    2021-12-12
  • VsCode中超好用的8个python插件推荐

    VsCode中超好用的8个python插件推荐

    本人日常使用vscode进行开发,并且比较喜欢折腾vscode,会到处找这一些好玩的插件,于是越攒越多,下面这篇文章主要给大家介绍了关于VsCode中超好用的8个python扩展插件的相关资料,需要的朋友可以参考下
    2022-12-12
  • Python hashlib模块用法实例分析

    Python hashlib模块用法实例分析

    这篇文章主要介绍了Python hashlib模块用法,结合实例形式分析了Python使用hash模块进行md5、sha1、sha224、sha256、sha512等加密运算相关操作技巧与注意事项,需要的朋友可以参考下
    2018-06-06
  • python对于requests的封装方法详解

    python对于requests的封装方法详解

    今天小编就为大家分享一篇python对于requests的封装方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python中的if判断语句中包含or问题

    Python中的if判断语句中包含or问题

    这篇文章主要介绍了Python中的if判断语句中包含or问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07
  • Python练习之ORM框架

    Python练习之ORM框架

    这篇文章主要介绍了Python练习之ORM框架,通过使用SQLObject框架操作MySQL数据库展开文章主题详细内容,具有一定的参考价值,需要的朋友可以参考一下
    2022-06-06
  • python在windows命令行下输出彩色文字的方法

    python在windows命令行下输出彩色文字的方法

    这篇文章主要介绍了python在windows命令行下输出彩色文字的方法,涉及Python文字特效操作技巧,需要的朋友可以参考下
    2015-03-03

最新评论