Python深度学习TensorFlow神经网络基础概括
更新时间:2021年10月16日 16:18:57 作者:_睿智_
这篇文章主要为大家介绍了Python深度学习中TensorFlow神经网络基础概括,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
一、基础理论
1、TensorFlow
tensor
:张量(数据)
flow
:流动
Tensor-Flow
:数据流
2、TensorFlow过程
TensorFlow构成:图和会话
1、构建图阶段
构建阶段:定义了数据(张量tensor)与操作(节点operation),构成图(静态)
张量:TensorFlow中的基本数据对象。
节点:提供图中执行的操作。
2、执行图阶段(会话)
执行阶段:使用会话执行定义好的数据与操作。
二、TensorFlow实例(执行加法)
1、构造静态图
1-1、创建数据(张量)
#图(静态) a = tf.constant(2) #数据1(张量) b = tf.constant(6) #数据2(张量)
1-2、创建操作(节点)
c = a + b #操作(节点)
2、会话(执行)
API:
普通执行
#会话(执行) with tf.Session() as sess: print(sess.run(a + b))
fetches(多参数执行)
#会话(执行) with tf.Session() as sess: print(sess.run([a,b,c]))
feed_dict(参数补充)
def Feed_Add(): #创建静态图 a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) c = tf.add(a,b) #会话(执行) with tf.Session() as sess: print(sess.run(c, feed_dict={a:0.5, b:2.0}))
总代码
import tensorflow as tf def Add(): #图(静态) a = tf.constant(2) #数据1(张量) b = tf.constant(6) #数据2(张量) c = a + b #操作(节点) #会话(执行) with tf.Session() as sess: print(sess.run([a,b,c])) def Feed_Add(): #创建静态图 a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) c = tf.add(a,b) #会话(执行) with tf.Session() as sess: print(sess.run(c, feed_dict={a:0.5, b:2.0})) Add() Feed_Add()
以上就是Python深度学习TensorFlow神经网络基础概括的详细内容,更多关于TensorFlow神经网络基础的资料请关注脚本之家其它相关文章!
相关文章
如何用python GUI(tkinter)写一个闹铃小程序(思路详解)
这篇文章主要介绍了用python GUI(tkinter)写一个闹铃小程序思路详解,涉及到tkinter一些函数控件,数据的类的封装,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下2021-12-12python try except返回异常的信息字符串代码实例
这篇文章主要介绍了python try except返回异常的信息字符串代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下2019-08-08Django如何使用asyncio协程和ThreadPoolExecutor多线程
这篇文章主要介绍了Django如何使用asyncio协程和ThreadPoolExecutor多线程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下2020-10-10详解pandas.DataFrame.plot() 画图函数
这篇文章主要介绍了详解pandas.DataFrame.plot()画图函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2020-06-06
最新评论