关于python 读取csv最快的Datatable的用法,你都学会了吗

 更新时间:2021年10月19日 11:03:37   作者:songroom  
大家都知道Datatable与众不同就是快,还有一点大家需要注意使用Datatable库需要python3.6及以上版本,接下来通过本文给大家介绍了python 读取csv最快的Datatable的用法,需要的朋友可以参考下

2021年7月1日,官方正式发布了1.0Datatable版本。1.0版本支持windows和linux,以及Macos。 具体文档可以见:

https://datatable.readthedocs.io/en/latest/start/using-datatable.html

Datatable与众不同就是快!

需要说明的是,使用Datatable库需要python3.6及以上版本。

import datatable as dt
import pandas as pd
import time
from datetime import date
from datatable import f,update

t0 = time.time()
t1 = time.time() 
file = r"C:\Users\songroom\Desktop\000001.csv"
my_table = dt.fread(file,sep=",",header=True)  ## datatable格式
## dt.fread(data, sep=",",header=False, columns=["A","B","C","D"]) 多种设置
t3 = time.time()
print(f"my_table    ->     data type    :{type(my_table)}")
print(f"my_table    ->     data name    : {my_table.names}")
print(f"my_table    ->    (nrows,ncols) : {my_table.shape}") # (nrows, ncols) 

my_table -> data type :<class ‘datatable.Frame'>
my_table -> data name : (‘date', ‘open', ‘close', ‘low', ‘high', ‘volume', ‘money', ‘factor', ‘high_limit', ‘low_limit', ‘avg', ‘pre_close', ‘paused', ‘open_interest')
my_table -> (nrows,ncols) : (590880, 14)

print(f"my_table    ->    head(10)      : " )
print(my_table.head(10)) # 
print(f" datatable  read_csv cost  time : {t3-t0} s!")

在这里插入图片描述

# ## 和pandas 相比

t4 = time.time() 
pandas_df = pd.read_csv(file) 
t5 = time.time() 
print(f" pandas read_csv cost    time     : {t5-t4} s! ")

datatable read_csv cost time : 0.059000492095947266 s!
pandas read_csv cost time : 1.7289988994598389 s!

把读取的csv存成jay文件

把.jay文件读成datatable

t6 = time.time() 
my_table.to_jay(r"C:\Users\songroom\Desktop\000001.jay")
t7 = time.time() 
print(f"datatable 把数据存放成jay cost time : {t7-t6} s!")
## 把.jay文件读成datatable
t8 = time.process_time_ns() ## 增加精度
table_jay = dt.fread(r"C:\Users\songroom\Desktop\000001.jay")
t9 = time.process_time_ns()
print(f"把.jay文件 读取到datatable cost time : {(t9-t8)/1000000000.0} s !")
print(f".jay文件读取成table_jay 的数据格式    :{type(table_jay)}")

datatable 把数据存放成jay cost time : 0.494002103805542 s! 把.jay文件
读取到datatable cost time : 0.0 s !
.jay文件读取成table_jay 的数据格式 :<class ‘datatable.Frame'>

## 把datatable转成pandas.dataframe
t10 = time.time() 
pandas_df = my_table.to_pandas()
t11 = time.time() 
print(f"pandas_df  type : {type(pandas_df)}  ")
print(f"datatable 转成  pandas df cost time : {t11-t10} s!")
print(f"{pandas_df.head()}")

pandas_df type : <class ‘pandas.core.frame.DataFrame'> datatable 转成
pandas df cost time : 0.1569967269897461 s!
在这里插入图片描述

把dataframe转成datatable

t12 = time.process_time()
my_table_from_df = dt.Frame(pandas_df)
t13 = time.process_time()
print(f"dataframe => datatable  cost time : {t13-t12} s!")
print(f"my_table_from_df type: {type(my_table_from_df)}   pandas_df type : {type(pandas_df)}")

dataframe => datatable cost time : 0.296875 s! my_table_from_df type:
<class ‘datatable.Frame'> pandas_df type : <class
‘pandas.core.frame.DataFrame'>

把datatable 转成 csv保存,把datatalbe扩展10倍,再输出csv

t14 = time.time() 
big_table = dt.repeat(my_table, 10) ## 
t14_1 = time.time()
big_table.to_csv(r"C:\Users\songroom\Desktop\000001_big.csv") 
t15 = time.time() 
print(f"big_table  shape (nrows,ncols  ) : {big_table.shape}")
print(f"datatable 扩展10倍        cost time :  {t14_1-t14}s!")
print(f"datatable 落地csv文件   cost time : {t15-t14_1} s!")

big_table shape (nrows,ncols ) : (5908800, 14)
datatable 扩展10倍 cost time : 0.0s!
datatable 落地csv文件 cost time : 9.905611753463745 s!

与各种类型数据的转换:

在这里插入图片描述

datatable => arrow()

arr_from_table = my_table.to_arrow()
print(f"{type(arr_from_table)}")

<class ‘pyarrow.lib.Table'>

把dict =>datatable

dict_data = {"dates" : [date(2000, 1, 5), date(2010, 11, 23), date(2020, 2, 29), None],
          "integers" : range(1, 5),
          "floats" : [10.0, 11.5, 12.3, -13],
          "strings" : ['A', 'B', None, 'D']
          }
table_from_dict = dt.Frame(dict_data)
print(f" dict_data type :{type(dict_data)}   table_from_dict type : {type(table_from_dict)} ")

把datatable => dict

dict_from_datatable = my_table.to_dict()
print(f" dict_from_datatable  type :{type(dict_from_datatable)}   my_table type : {type(my_table)} ")

把datatable 取值和过滤

my_table_new  = my_table[:, "close"]

找到符合这两个条件(且)的table,这两个条件要括起来!

table_3800_and    = my_table[(f.close > 3800) & (f.pre_close < 3800),:] 

找到符合这两个条件(or)的table,这两个条件要括起来!

table_3800_or    = my_table[(f.close > 3800) | (f.pre_close < 3800),:] 
my_table[:, 'date']  ## 选择date列
my_table['date']     ## 同上
my_table[:,["date","close"]] ## 选择 date,close两列
my_table[:,f.close]  ## 选择close
my_table[[1, 2, 3], :] ## 选择相应的行
my_table[range(1, 3), :] ## 选择相应的行

把 datatable 转成list

my_list = my_table_new.to_list()

两个datatable的操作 合并

dt1 = dt.rbind(my_table, table_3800_or) ## 这两个table合并,行上进行合并;列上扩展用rbind()
del dt1[:, ['date', 'close']] ## 删除两列
my_table['low_high'] = my_table[:, (f.low + f.high)/2.0] ## 增加一列,赋值方法
my_table[:, update(mean = (f.low+ f.high +f.close)/3.0)] ## 增加一列,update方法
my_table.names = {"low_high": "lowhigh", "mean": "mean_3"} ## 对两列的字段进行重命名

dict_from_datatable type :<class ‘dict'> my_table type : <class ‘datatable.Frame'>

在这里插入图片描述

循环,效率好象比较慢!后面还待观察是否有优化!

nrows,ncols = my_table.shape
tt0 = time.time()
for i in range(nrows):
    values = my_table[i,:]
tt1 = time.time()
print(f"my_table 循环 cost time :{tt1-tt0} s")

my_table 循环 cost time :9.566002130508423 s。效率看起来比较低。

到此这篇关于python 读取csv最快的Datatable的用法的文章就介绍到这了,更多相关python 读取csv内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 解决python递归函数及递归次数受到限制的问题

    解决python递归函数及递归次数受到限制的问题

    这篇文章主要介绍了解决python递归函数及递归次数受到限制的问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-06-06
  • Windows下python3.7安装教程

    Windows下python3.7安装教程

    这篇文章主要为大家详细介绍了Windows下python3.7安装教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-07-07
  • python开发之thread实现布朗运动的方法

    python开发之thread实现布朗运动的方法

    这篇文章主要介绍了python开发之thread实现布朗运动的方法,实例分析了Python基于多线程实现绘图的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-11-11
  • anaconda 部署Jupyter Notebook服务器过程详解

    anaconda 部署Jupyter Notebook服务器过程详解

    这篇文章主要为大家介绍了anaconda 部署Jupyter Notebook服务器过程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-09-09
  • python UDP(udp)协议发送和接收的实例

    python UDP(udp)协议发送和接收的实例

    今天小编就为大家分享一篇python UDP(udp)协议发送和接收的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python 中pass和match使用方法

    python 中pass和match使用方法

    这篇文章主要介绍了python中pass和match使用方法,​pass​​ 语句不执行任何操作。语法上需要一个语句,但程序不实际执行任何动作时,可以使用该语句
    2022-08-08
  • python中合并两个文本文件并按照姓名首字母排序的例子

    python中合并两个文本文件并按照姓名首字母排序的例子

    这篇文章主要介绍了python中合并两个文本文件并按照姓名首字母排序的例子,需要的朋友可以参考下
    2014-04-04
  • Pandas之缺失数据的实现

    Pandas之缺失数据的实现

    这篇文章主要介绍了Pandas之缺失数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • python中关于os.path.pardir的一些坑

    python中关于os.path.pardir的一些坑

    这篇文章主要介绍了python中关于os.path.pardir的一些坑及解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-09-09
  • 使用Pandas的Series方法绘制图像教程

    使用Pandas的Series方法绘制图像教程

    今天小编就为大家分享一篇使用Pandas的Series方法绘制图像教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12

最新评论