Python光学仿真学习Gauss高斯光束在空间中的分布
更新时间:2021年10月20日 14:56:53 作者:微小冷
这篇文章主要介绍了Python光学仿真学习中Gauss高斯光束在空间中的分布理解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
Gauss光束强度的表达式为
如图所示
左上图和左下图表示激光传输过程中的其束腰半径的变化情况;右图则表示高斯光束某一横截面处激光的能量分布。
绘制代码如下
import matplotlib.pyplot as plt import numpy as np def setLabel(ax,*args): ax.set_xlabel(args[0]) ax.set_ylabel(args[1]) if len(args)==3: ax.set_zlabel(args[2]) def drawGauss(w0=1,dWave=1.064): # 轴向坐标 z = np.linspace(-10,10,1000).reshape(1000,1) # z处光斑半径 w = np.sqrt(w0**2+z**2*dWave**2/np.pi**2/w0**2) theta = np.linspace(0,np.pi*2,150).reshape(1,150) x = w*np.cos(theta) y = w*np.sin(theta) fig = plt.figure() # 三维的高斯光束等功率密度面变化图 ax1 = fig.add_subplot(221,projection='3d') ax1.plot_surface(z,x,y)#,cmap=plt.get_cmap('rainbow')) ax1.set_title("waist shape changed by propagation") setLabel(ax1,"z","x","y") # 二维的高斯光束半径变化图 ax3 = fig.add_subplot(223) ax3.plot(z,w,linewidth=1) ax3.plot(z,-w,linewidth=0.2) ax3.plot([z[0],z[-1]],[0,0],linewidth=0.5,linestyle=":") ax3.set_title("waist value changed by propagation") setLabel(ax3,"z","w") # Gauss光束在束腰处的切片 X,Y = np.meshgrid(np.linspace(-5,5,100),np.linspace(-5,5,100)) Psi = np.exp(-(X**2+Y**2)/w0**2)/w0 ax2 = fig.add_subplot(222,projection='3d') ax2.plot_surface(X,Y,Psi) ax2.set_title("Intensity distribution on waist0") setLabel(ax2,"x","y","Instensity") # Gauss光束在束腰处的径向切片 r = np.linspace(-5,5,200) Psi = np.exp(-r**2/w0**2)/w0 ax4 = fig.add_subplot(224) ax4.plot(r,Psi) ax4.set_title("Intensity distribution on waist0") setLabel(ax4,"r","Instensity") plt.show()
如果沿着z轴方向,在不同的位置处对Gauss光束进行切片处理,则不同位置处径向功率分布如图所示
实现代码如下
import matplotlib.animation as animation def GaussGif1d(w0=1,dWave=1.064): zAxis = np.arange(100) # 轴向坐标 z = np.linspace(0,10,100) # z处的束腰半径 w = np.sqrt(w0**2+z**2*dWave**2/np.pi**2/w0**2) x = np.linspace(-10,10,500) fig = plt.figure() ax = fig.gca(xlim=(-5,5),ylim=(0,1)) ax.grid() line, = ax.plot([],[]) time_text = ax.text(0.1,0.9,'',transform=ax.transAxes) # 初始化图像 def init(): line.set_data([],[]) time_text.set_text("") return line, time_text # 图像迭代 def animate(i): wi = w[i] Psi = np.exp(-x**2/wi**2)/wi line.set_data(x,Psi) time_text.set_text("z="+str(z[i])) return line, time_text ani = animation.FuncAnimation(fig, animate, zAxis, interval=200, init_func=init) ani.save('gauss.gif',writer='imagemagick') plt.show()
以上就是Python光学仿真学习Gauss高斯光束在空间中的分布的详细内容,更多关于Python光学仿真Gauss高斯光束空间分布的资料请关注脚本之家其它相关文章!
相关文章
python sklearn与pandas实现缺失值数据预处理流程详解
对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用2022-09-09使用python计算方差方式——pandas.series.std()
这篇文章主要介绍了使用python计算方差方式——pandas.series.std(),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2022-05-05TensorFlow tf.nn.conv2d实现卷积的方式
今天小编就为大家分享一篇TensorFlow tf.nn.conv2d实现卷积的方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-01-01
最新评论