go语言编程学习实现图的广度与深度优先搜索

 更新时间:2021年10月20日 16:56:19   作者:微小冷  
这篇文章主要为大家介绍了go语言编程学习实现图的广度与深度优先搜索示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

图的实现

所谓图就是节点及其连接关系的集合。所以可以通过一个一维数组表示节点,外加一个二维数组表示节点之间的关系。

//图的矩阵实现
typedef struct MGRAPH{
    nodes int[];    //节点
    edges int[][];  //边
}mGraph;

在这里插入图片描述

然而对于一些实际问题,其邻接矩阵中可能存在大量的0值,此时可以通过邻接链表来表示稀疏图,其数据结构如图所示

在这里插入图片描述

其左侧为图的示意图,右侧为图的邻接链表。红字表示节点序号,链表中为与这个节点相连的节点,如1节点与2、5节点相连。由于在go中,可以很方便地使用数组来代替链表,所以其链表结构可以写为

package main
import "fmt"
type Node struct{
	value int;      //节点为int型
};
type Graph struct{
	nodes []*Node
	edges map[Node][]*Node		//邻接表示的无向图
}

其中,map为Go语言中的键值索引类型,其定义格式为map[<op1>]<op2><op1>为键,<op2>为值。在图结构中,map[Node][]*Node表示一个Node对应一个Node指针所组成的数组。

下面将通过Go语言生成一个图

//增加节点
//可以理解为Graph的成员函数
func (g *Graph) AddNode(n *Node)  {
	g.nodes = append(g.nodes, n)
}
//增加边
func (g *Graph) AddEdge(u, v *Node) {
	g.edges[*u] = append(g.edges[*u],v)	//u->v边
	g.edges[*v] = append(g.edges[*v],u)	//u->v边
}
//打印图
func (g *Graph) Print(){
	//range遍历 g.nodes,返回索引和值
	for _,iNode:=range g.nodes{
		fmt.Printf("%v:",iNode.value)
		for _,next:=range g.edges[*iNode]{
			fmt.Printf("%v->",next.value)
		}
		fmt.Printf("\n")
	}
}
func initGraph() Graph{
	g := Graph{}
	for i:=1;i<=5;i++{
		g.AddNode(&Node{i,false})
	}
	//生成边
	A := [...]int{1,1,2,2,2,3,4}
	B := [...]int{2,5,3,4,5,4,5}
	g.edges = make(map[Node][]*Node)//初始化边
	for i:=0;i<7;i++{
		g.AddEdge(g.nodes[A[i]-1], g.nodes[B[i]-1])
	}
	return g
}
func main(){
	g := initGraph()
	g.Print()
}

其运行结果为

PS E:\Code> go run .\goGraph.go
1:2->5->
2:1->3->4->5->
3:2->4->
4:2->3->5->
5:1->2->4->

BFS

广度优先搜索(BFS)是最简单的图搜索算法,给定图的源节点后,向外部进行试探性地搜索。其特点是,通过与源节点的间隔来调控进度,即只有当距离源节点为 k k k的节点被搜索之后,才会继续搜索,得到距离源节点为 k + 1 k+1 k+1的节点。

对于图的搜索而言,可能存在重复的问题,即如果1搜索到2,相应地2又搜索到1,可能就会出现死循环。因此对于图中的节点,我们用searched对其进行标记,当其值为false时,说明没有被搜索过,否则则说明已经搜索过了。

type Node struct{
	value int;
	searched bool;
}
/*func initGraph() Graph{
    g := Graph{}
*/
    //相应地更改节点生成函数
    for i:=1;i<=5;i++{
		g.AddNode(&Node{i,false})
	}
/*
...
*/

此外,由于在搜索过程中会改变节点的属性,所以map所对应哈希值也会发生变化,即Node作为键值将无法对应原有的邻接节点,所以Graph中边的键值更替为节点的指针,这样即便节点的值发生变化,但其指针不会变化。

type Graph struct{
	nodes []*Node
	edges map[*Node][]*Node		//邻接表示的无向图
}
//增加边
func (g *Graph) AddEdge(u, v *Node) {
	g.edges[u] = append(g.edges[u],v)	//u->v边
	g.edges[v] = append(g.edges[v],u)	//u->v边
}
//打印图
func (g *Graph) Print(){
	//range遍历 g.nodes,返回索引和值
	for _,iNode:=range g.nodes{
		fmt.Printf("%v:",iNode.value)
		for _,next:=range g.edges[iNode]{
			fmt.Printf("%v->",next.value)
		}
		fmt.Printf("\n")
	}
}
func initGraph() Graph{
	g := Graph{}
	for i:=1;i<=9;i++{
		g.AddNode(&Node{i,false})
	}
	//生成边
	A := [...]int{1,1,2,2,2,3,4,5,5,6,1}
	B := [...]int{2,5,3,4,5,4,5,6,7,8,9}
	g.edges = make(map[*Node][]*Node)//初始化边
	for i:=0;i<11;i++{
		g.AddEdge(g.nodes[A[i]-1], g.nodes[B[i]-1])
	}
	return g
}
func (g *Graph) BFS(n *Node){
	var adNodes[] *Node		//存储待搜索节点
	n.searched = true
	fmt.Printf("%d:",n.value)
	for _,iNode:=range g.edges[n]{
		if !iNode.searched {
			adNodes = append(adNodes,iNode)
			iNode.searched=true
			fmt.Printf("%v ",iNode.value)
		}
	}
	fmt.Printf("\n")
	for _,iNode:=range adNodes{
		g.BFS(iNode)
	}
}
func main(){
	g := initGraph()
	g.Print()
	g.BFS(g.nodes[0])
}

该图为

在这里插入图片描述

输出结果为

PS E:\Code\goStudy> go run .\goGraph.go
1:2->5->9->
2:1->3->4->5->
3:2->4->
4:2->3->5->
5:1->2->4->6->7->
6:5->8->
7:5->
8:6->
9:1->
//下面为BFS结果
1:2 5 9
2:3 4
3:
4:
5:6 7
6:8
8:
7:
9:

DFS

深度优先遍历(DFS)与BFS的区别在于,后者的搜索过程可以理解为逐层的,即可将我们初始搜索的节点看成父节点,那么与该节点相连接的便是一代节点,搜索完一代节点再搜索二代节点。DFS则是从父节点搜索开始,一直搜索到末代节点,从而得到一个末代节点的一条世系;然后再对所有节点进行遍历,找到另一条世系,直至不存在未搜索过的节点。

其基本步骤为:

  • 首先选定一个未被访问过的顶点 V 0 V_0 V0​作为初始顶点,并将其标记为已访问
  • 然后搜索 V 0 V_0 V0​邻接的所有顶点,判断是否被访问过,如果有未被访问的顶点,则任选一个顶点 V 1 V_1 V1​进行访问,依次类推,直到 V n V_n Vn​不存在未被访问过的节点为止。
  • 若此时图中仍旧有顶点未被访问,则再选取其中一个顶点进行访问,否则遍历结束。

我们先实现第二步,即单个节点的最深搜索结果

func (g *Graph) visitNode(n *Node){
	for _,iNode:= range g.edges[n]{
		if !iNode.searched{
			iNode.searched = true
			fmt.Printf("%v->",iNode.value)
			g.visitNode(iNode)
			return
		}
	}
}
func main(){
	g := initGraph()
	g.nodes[0].searched = true
	fmt.Printf("%v->",g.nodes[0].value)
	g.visitNode(g.nodes[0])
}

结果为

PS E:\Code> go run .\goGraph.go
1->2->3->4->5->6->8->

在这里插入图片描述

可见,还有节点7、9未被访问。

完整的DFS算法只需在单点遍历之前,加上一个对所有节点的遍历即可

func (g *Graph) DFS(){
	for _,iNode:=range g.nodes{
		if !iNode.searched{
			iNode.searched = true
			fmt.Printf("%v->",iNode.value)
			g.visitNode(iNode)
			fmt.Printf("\n")
			g.DFS()
		}
	}
}
func main(){
	g := initGraph()
	g.nodes[0].searched = true
	fmt.Printf("%v->",g.nodes[0].value)
	g.visitNode(g.nodes[0])
}

结果为

PS E:\Code> go run .\goGraph.go
1->2->3->4->5->6->8->
7->
9->

以上就是go语言编程学习实现图的广度与深度优先搜索的详细内容,更多关于go语言实现图的广度与深度优先搜索的资料请关注脚本之家其它相关文章!

相关文章

  • Go语言sync.Pool对象池使用场景基本示例

    Go语言sync.Pool对象池使用场景基本示例

    这篇文章主要为大家介绍了Go语言sync.Pool对象池使用场景的基本示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • golang gin 框架 异步同步 goroutine 并发操作

    golang gin 框架 异步同步 goroutine 并发操作

    这篇文章主要介绍了golang gin 框架 异步同步 goroutine 并发操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • 使用Golang轻松实现JWT身份验证的示例代码

    使用Golang轻松实现JWT身份验证的示例代码

    JSON Web Tokens (JWT)是一种流行的安全方法,用于在两个方之间表示声明,本文主要为大家详细介绍了实现Go应用程序中的JWT身份验证过程,需要的可以参考下
    2024-02-02
  • golang模板template自定义函数用法示例

    golang模板template自定义函数用法示例

    这篇文章主要介绍了golang模板template自定义函数用法,结合实例形式分析了Go语言模板自定义函数的基本定义与使用方法,需要的朋友可以参考下
    2016-07-07
  • Go语言实现socket实例

    Go语言实现socket实例

    这篇文章主要介绍了Go语言实现socket的方法,实例分析了socket客户端与服务器端的实现技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-02-02
  • Go语言创建、初始化数组的常见方式汇总

    Go语言创建、初始化数组的常见方式汇总

    这篇文章主要介绍了Go语言创建、初始化数组的常见方式,实例汇总了Go语言操作数组的常见技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-02-02
  • 浅析Go语言中数组的这些细节

    浅析Go语言中数组的这些细节

    这篇文章主要为大家详细介绍了Go语言中数组一些细节的相关资料,文中的示例代码讲解详细,对我们学习Go语言有一定的帮助,需要的可以了解一下
    2022-11-11
  • Golang实现IO操作

    Golang实现IO操作

    本文主要介绍了Golang实现IO操作,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-05-05
  • 解决goland新建项目文件名为红色的问题

    解决goland新建项目文件名为红色的问题

    这篇文章主要介绍了解决goland新建项目文件名为红色的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • Go常问的一些面试题汇总(附答案)

    Go常问的一些面试题汇总(附答案)

    通常我们去面试肯定会有些不错的Golang的面试题目的,所以总结下,让其他Golang开发者也可以查看到,同时也用来检测自己的能力和提醒自己的不足之处,这篇文章主要给大家介绍了关于Go常问的一些面试题以及答案的相关资料,需要的朋友可以参考下
    2023-10-10

最新评论