python 多线程与多进程效率测试

 更新时间:2021年10月26日 10:45:00   作者:Silent丿丶黑羽  
这篇文章主要介绍了python 多线程与多进程效率测试,在Python中,计算密集型任务适用于多进程,IO密集型任务适用于多线程、接下来看看文章得实例吧,需要的朋友可以参考一下哟

1、概述

在Python中,计算密集型任务适用于多进程,IO密集型任务适用于多线程

正常来讲,多线程要比多进程效率更高,因为进程间的切换需要的资源和开销更大,而线程相对更小,但是我们使用的Python大多数的解释器是Cpython,众所周知Cpython有个GIL锁,导致执行计算密集型任务时多线程实际只能是单线程,而且由于线程之间切换的开销导致多线程往往比实际的单线程还要慢,所以在 python 中计算密集型任务通常使用多进程,因为各个进程有各自独立的GIL,互不干扰。

而在IO密集型任务中,CPU时常处于等待状态,操作系统需要频繁与外界环境进行交互,如读写文件,在网络间通信等。在这期间GIL会被释放,因而就可以使用真正的多线程。

上面都是理论,接下来实战看看实际效果是否符合理论

2、代码练习

"""多线程多进程模拟执行效率"""


from multiprocessing import Pool
from threading import Thread
import time, math


def simulation_IO(a):
    """模拟IO操作"""
    time.sleep(3)


def simulation_compute(a):
    """模拟计算密集型任务"""
    for i in range(int(1e7)):
        math.sin(40) + math.cos(40)
    return


def normal_func(func):
    """普通方法执行效率"""
    for i in range(6):
        func(i)
    return


def mp(func):
    """进程池中的map方法"""
    with Pool(processes=6) as p:
        res = p.map(func, list(range(6)))
    return


def asy(func):
    """进程池中的异步执行"""
    with Pool(processes=6) as p:
        result = []
        for j in range(6):
            a = p.apply_async(func, args=(j, ))
            result.append(a)
        res = [j.get() for j in result]


def thread(func):
    """多线程方法"""
    threads = []
    for j in range(6):
        t = Thread(target=func, args=(j, ))
        threads.append(t)
        t.start()
    for t in threads:
        t.join()


def showtime(f, func, name):
    """
    计算并展示函数的运行时间
    :param f: 多进程和多线程的方法
    :param func: 多进程和多线程方法中需要传入的函数
    :param name: 方法的名字
    :return:
    """
    start_time = time.time()
    f(func)
    print(f"{name} time: {time.time() - start_time:.4f}s")


def main(func):
    """
    运行程序的主函数
    :param func: 传入需要计算时间的函数名
    """
    showtime(normal_func, func, "normal")
    print()
    print("------ 多进程 ------")
    showtime(mp, func, "map")
    showtime(asy, func, "async")
    print()
    print("----- 多线程 -----")
    showtime(thread, func, "thread")


if __name__ == "__main__":
    print("------------ 计算密集型 ------------")
    func = simulation_compute
    main(func)
    print()
    print()
    print()
    print("------------ IO 密集型 ------------")
    func = simulation_IO
    main(func)
 

3、运行结果

线性执行 多进程(map) 多进程(async) 多线程
计算密集型 16.0284s 3.5236s 3.4367s 15.2142s
IO密集型 18.0201s 3.0945s 3.0809s 3.0041s

从表格中很明显的可以看出:

  • 计算密集型任务的速度:多进程 >多线程> 单进程/线程
  • IO密集型任务速度: 多线程 > 多进程 > 单进程/线程。

所以,针对计算密集型任务使用多进程,针对IO密集型任务使用多线程

到此这篇关于python 多线程与多进程效率测试 的文章就介绍到这了,更多相关python 多线程内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python线程池的正确使用方法

    Python线程池的正确使用方法

    这篇文章主要介绍了Python线程池的正确使用方法,Python的线程池与Java线程池基本原理和概念是共通的。最大的区别大概就是语言的区别吧,感兴趣的朋友可以参考下面内容
    2021-09-09
  • 深入浅出分析Python装饰器用法

    深入浅出分析Python装饰器用法

    这篇文章主要介绍了Python装饰器用法,结合实例形式对比分析了Python装饰器的定义与使用技巧,需要的朋友可以参考下
    2017-07-07
  • Python 面向对象静态方法、类方法、属性方法知识点小结

    Python 面向对象静态方法、类方法、属性方法知识点小结

    这篇文章主要介绍了Python 面向对象静态方法、类方法、属性方法,总结分析了Python 面向对象程序设计中静态方法、类方法、属性方法相关概念、知识点、操作技巧与使用注意事项,需要的朋友可以参考下
    2020-03-03
  • 基于python模拟bfs和dfs代码实例

    基于python模拟bfs和dfs代码实例

    这篇文章主要介绍了基于python模拟bfs和dfs代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-11-11
  • python发送邮件功能实现代码

    python发送邮件功能实现代码

    这篇文章主要为大家详细介绍了python发送邮件功能实现代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-07-07
  • Python深入学习之对象的属性

    Python深入学习之对象的属性

    这篇文章主要介绍了Python深入学习之对象的属性,本文从较深的层次讲解对象属性的内部运行方式,需要的朋友可以参考下
    2014-08-08
  • Python re.split方法分割字符串的实现示例

    Python re.split方法分割字符串的实现示例

    本文主要介绍了Python re.split方法分割字符串的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • pytorch .detach() .detach_() 和 .data用于切断反向传播的实现

    pytorch .detach() .detach_() 和 .data用于切断反向传播的实现

    这篇文章主要介绍了pytorch .detach() .detach_() 和 .data用于切断反向传播的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-12-12
  • Python实现印章代码的算法解析

    Python实现印章代码的算法解析

    这篇文章主要为大家介绍了Python印章代码实现算法解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • Python numpy线性代数用法实例解析

    Python numpy线性代数用法实例解析

    这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11

最新评论