Python人工智能之sg2im文字转图像

 更新时间:2021年11月06日 09:31:14   作者:mind_programmonkey  
这篇文章主要介绍了Python人工智能中使用sg2im把文字转成图像的方法,sg2im是一个由Google开发的开源项目,它专注于将场景图形转换为图像,借助sg2im就可以把文字转换成图像,需要的朋友可以参考下

从github上下载源码

!git clone https://github.com/google/sg2im.git

Cloning into 'sg2im'...
remote: Enumerating objects: 85, done.[K
remote: Total 85 (delta 0), reused 0 (delta 0), pack-reused 85[K
Unpacking objects: 100% (85/85), done.

! cp -r sg2im/sg2im sg2im/scripts/

!pip install -r sg2im/requirements.txt

Collecting cloudpickle==0.5.3
Downloading https://files.pythonhosted.org/packages/e7/bf/60ae7ec1e8c6742d2abbb6819c39a48ee796793bcdb7e1d5e41a3e379ddd/cloudpickle-0.5.3-py2.py3-none-any.whl
Requirement already satisfied: cycler==0.10.0 in /usr/local/lib/python3.6/dist-packages (from -r sg2im/requirements.txt (line 2)) (0.10.0)
Collecting Cython==0.28.3
[?25l Downloading https://files.pythonhosted.org/packages/6f/79/d8e2cd00bea8156a995fb284ce7b6677c49eccd2d318f73e201a9ce560dc/Cython-0.28.3-cp36-cp36m-manylinux1_x86_64.whl (3.4MB)
[K |████████████████████████████████| 3.4MB 8.6MB/s
[?25hCollecting dask==0.17.5
[?25l Downloading https://files.pythonhosted.org/packages/91/1a/71be14f468f8f3f94e708afd5662cf75a0ca33a78924ca9f129a9c45c66b/dask-0.17.5-py3-none-any.whl (598kB)
[K |████████████████████████████████| 604kB 30.6MB/s
[?25hCollecting decorator==4.3.0
Downloading https://files.pythonhosted.org/packages/bc/bb/a24838832ba35baf52f32ab1a49b906b5f82fb7c76b2f6a7e35e140bac30/decorator-4.3.0-py2.py3-none-any.whl
Collecting h5py==2.8.0
[?25l Downloading https://files.pythonhosted.org/packages/8e/cb/726134109e7bd71d98d1fcc717ffe051767aac42ede0e7326fd1787e5d64/h5py-2.8.0-cp36-cp36m-manylinux1_x86_64.whl (2.8MB)
[K |████████████████████████████████| 2.8MB 57.5MB/s
[?25hCollecting imageio==2.3.0
[?25l Downloading https://files.pythonhosted.org/packages/a7/1d/33c8686072148b3b0fcc12a2e0857dd8316b8ae20a0fa66c8d6a6d01c05c/imageio-2.3.0-py2.py3-none-any.whl (3.3MB)
[K |████████████████████████████████| 3.3MB 59.0MB/s
[?25hCollecting kiwisolver==1.0.1
[?25l Downloading https://files.pythonhosted.org/packages/69/a7/88719d132b18300b4369fbffa741841cfd36d1e637e1990f27929945b538/kiwisolver-1.0.1-cp36-cp36m-manylinux1_x86_64.whl (949kB)
[K |████████████████████████████████| 952kB 56.0MB/s
[?25hCollecting matplotlib==2.2.2
[?25l Downloading https://files.pythonhosted.org/packages/49/b8/89dbd27f2fb171ce753bb56220d4d4f6dbc5fe32b95d8edc4415782ef07f/matplotlib-2.2.2-cp36-cp36m-manylinux1_x86_64.whl (12.6MB)
[K |████████████████████████████████| 12.6MB 238kB/s
[?25hCollecting networkx==2.1
[?25l Downloading https://files.pythonhosted.org/packages/11/42/f951cc6838a4dff6ce57211c4d7f8444809ccbe2134179950301e5c4c83c/networkx-2.1.zip (1.6MB)
[K |████████████████████████████████| 1.6MB 49.4MB/s
[?25hCollecting numpy==1.14.4
[?25l Downloading https://files.pythonhosted.org/packages/4b/3d/9c0a34ad8544abef864714840fb8954d630b04433f00881bc8fde7b2ab27/numpy-1.14.4-cp36-cp36m-manylinux1_x86_64.whl (12.2MB)
[K |████████████████████████████████| 12.2MB 149kB/s
[?25hCollecting Pillow==5.1.0
[?25l Downloading https://files.pythonhosted.org/packages/5f/4b/8b54ab9d37b93998c81b364557dff9f61972c0f650efa0ceaf470b392740/Pillow-5.1.0-cp36-cp36m-manylinux1_x86_64.whl (2.0MB)
[K |████████████████████████████████| 2.0MB 53.7MB/s
[?25hCollecting pyparsing==2.2.0
[?25l Downloading https://files.pythonhosted.org/packages/6a/8a/718fd7d3458f9fab8e67186b00abdd345b639976bc7fb3ae722e1b026a50/pyparsing-2.2.0-py2.py3-none-any.whl (56kB)
[K |████████████████████████████████| 61kB 9.3MB/s
[?25hCollecting python-dateutil==2.7.3
[?25l Downloading https://files.pythonhosted.org/packages/cf/f5/af2b09c957ace60dcfac112b669c45c8c97e32f94aa8b56da4c6d1682825/python_dateutil-2.7.3-py2.py3-none-any.whl (211kB)
[K |████████████████████████████████| 215kB 49.8MB/s
[?25hCollecting pytz==2018.4
[?25l Downloading https://files.pythonhosted.org/packages/dc/83/15f7833b70d3e067ca91467ca245bae0f6fe56ddc7451aa0dc5606b120f2/pytz-2018.4-py2.py3-none-any.whl (510kB)
[K |████████████████████████████████| 512kB 56.7MB/s
[?25hCollecting PyWavelets==0.5.2
[?25l Downloading https://files.pythonhosted.org/packages/32/c0/3646053c0ce297686da524bc968bff6017151a9089d16c33afe7d330a48b/PyWavelets-0.5.2-cp36-cp36m-manylinux1_x86_64.whl (5.7MB)
[K |████████████████████████████████| 5.7MB 29.6MB/s
[?25hCollecting scikit-image==0.14.0
[?25l Downloading https://files.pythonhosted.org/packages/34/79/cefff573a53ca3fb4c390739d19541b95f371e24d2990aed4cd8837971f0/scikit_image-0.14.0-cp36-cp36m-manylinux1_x86_64.whl (25.3MB)
[K |████████████████████████████████| 25.3MB 115kB/s
[?25hCollecting scipy==1.1.0
[?25l Downloading https://files.pythonhosted.org/packages/a8/0b/f163da98d3a01b3e0ef1cab8dd2123c34aee2bafbb1c5bffa354cc8a1730/scipy-1.1.0-cp36-cp36m-manylinux1_x86_64.whl (31.2MB)
[K |████████████████████████████████| 31.2MB 97kB/s
[?25hCollecting six==1.11.0
Downloading https://files.pythonhosted.org/packages/67/4b/141a581104b1f6397bfa78ac9d43d8ad29a7ca43ea90a2d863fe3056e86a/six-1.11.0-py2.py3-none-any.whl
Collecting toolz==0.9.0
[?25l Downloading https://files.pythonhosted.org/packages/14/d0/a73c15bbeda3d2e7b381a36afb0d9cd770a9f4adc5d1532691013ba881db/toolz-0.9.0.tar.gz (45kB)
[K |████████████████████████████████| 51kB 8.4MB/s
[?25hCollecting torch==0.4.0
[?25l Downloading https://files.pythonhosted.org/packages/69/43/380514bd9663f1bf708abeb359b8b48d3fabb1c8e95bb3427a980a064c57/torch-0.4.0-cp36-cp36m-manylinux1_x86_64.whl (484.0MB)
[K |████████████████████████████████| 484.0MB 33kB/s
[?25hCollecting torchvision==0.2.1
[?25l Downloading https://files.pythonhosted.org/packages/ca/0d/f00b2885711e08bd71242ebe7b96561e6f6d01fdb4b9dcf4d37e2e13c5e1/torchvision-0.2.1-py2.py3-none-any.whl (54kB)
[K |████████████████████████████████| 61kB 9.8MB/s
[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from kiwisolver==1.0.1->-r sg2im/requirements.txt (line 8)) (47.1.1)
Building wheels for collected packages: networkx, toolz
Building wheel for networkx (setup.py) ... [?25l[?25hdone
Created wheel for networkx: filename=networkx-2.1-py2.py3-none-any.whl size=1447765 sha256=4e89cc8350ab7270295c4e879190531eee2b1205e4a7b0c073ed8fe950717a25
Stored in directory: /root/.cache/pip/wheels/44/c0/34/6f98693a554301bdb405f8d65d95bbcd3e50180cbfdd98a94e
Building wheel for toolz (setup.py) ... [?25l[?25hdone
Created wheel for toolz: filename=toolz-0.9.0-cp36-none-any.whl size=53240 sha256=eb0e9434019a90c774ffcbfb077542b8688b43df4895b0c5c57204702dadc064
Stored in directory: /root/.cache/pip/wheels/f4/0c/f6/ce6b2d1aa459ee97cc3c0f82236302bd62d89c86c700219463
Successfully built networkx toolz
[31mERROR: xarray 0.15.1 has requirement numpy>=1.15, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: umap-learn 0.4.3 has requirement numpy>=1.17, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: umap-learn 0.4.3 has requirement scipy>=1.3.1, but you'll have scipy 1.1.0 which is incompatible.[0m
[31mERROR: tifffile 2020.5.30 has requirement numpy>=1.15.1, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: tensorflow 2.2.0 has requirement h5py<2.11.0,>=2.10.0, but you'll have h5py 2.8.0 which is incompatible.[0m
[31mERROR: tensorflow 2.2.0 has requirement numpy<2.0,>=1.16.0, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: tensorflow 2.2.0 has requirement scipy==1.4.1; python_version >= "3", but you'll have scipy 1.1.0 which is incompatible.[0m
[31mERROR: tensorflow 2.2.0 has requirement six>=1.12.0, but you'll have six 1.11.0 which is incompatible.[0m
[31mERROR: tensorflow-probability 0.10.0 has requirement cloudpickle>=1.2.2, but you'll have cloudpickle 0.5.3 which is incompatible.[0m
[31mERROR: tensorflow-hub 0.8.0 has requirement six>=1.12.0, but you'll have six 1.11.0 which is incompatible.[0m
[31mERROR: spacy 2.2.4 has requirement numpy>=1.15.0, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: plotnine 0.6.0 has requirement matplotlib>=3.1.1, but you'll have matplotlib 2.2.2 which is incompatible.[0m
[31mERROR: plotnine 0.6.0 has requirement numpy>=1.16.0, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: plotnine 0.6.0 has requirement scipy>=1.2.0, but you'll have scipy 1.1.0 which is incompatible.[0m
[31mERROR: numba 0.48.0 has requirement numpy>=1.15, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: mizani 0.6.0 has requirement matplotlib>=3.1.1, but you'll have matplotlib 2.2.2 which is incompatible.[0m
[31mERROR: imgaug 0.2.9 has requirement numpy>=1.15.0, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: gym 0.17.2 has requirement cloudpickle<1.4.0,>=1.2.0, but you'll have cloudpickle 0.5.3 which is incompatible.[0m
[31mERROR: google-colab 1.0.0 has requirement six~=1.12.0, but you'll have six 1.11.0 which is incompatible.[0m
[31mERROR: featuretools 0.4.1 has requirement dask>=0.19.4, but you'll have dask 0.17.5 which is incompatible.[0m
[31mERROR: fbprophet 0.6 has requirement python-dateutil>=2.8.0, but you'll have python-dateutil 2.7.3 which is incompatible.[0m
[31mERROR: fastai 1.0.61 has requirement numpy>=1.15, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: fastai 1.0.61 has requirement torch>=1.0.0, but you'll have torch 0.4.0 which is incompatible.[0m
[31mERROR: distributed 1.25.3 has requirement dask>=0.18.0, but you'll have dask 0.17.5 which is incompatible.[0m
[31mERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.[0m
[31mERROR: cvxpy 1.0.31 has requirement numpy>=1.15, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: blis 0.4.1 has requirement numpy>=1.15.0, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: astropy 4.0.1.post1 has requirement numpy>=1.16, but you'll have numpy 1.14.4 which is incompatible.[0m
[31mERROR: albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.9 which is incompatible.[0m
Installing collected packages: cloudpickle, Cython, dask, decorator, six, numpy, h5py, Pillow, imageio, kiwisolver, python-dateutil, pytz, pyparsing, matplotlib, networkx, PyWavelets, scipy, scikit-image, toolz, torch, torchvision
Found existing installation: cloudpickle 1.3.0
Uninstalling cloudpickle-1.3.0:
Successfully uninstalled cloudpickle-1.3.0
Found existing installation: Cython 0.29.19
Uninstalling Cython-0.29.19:
Successfully uninstalled Cython-0.29.19
Found existing installation: dask 2.12.0
Uninstalling dask-2.12.0:
Successfully uninstalled dask-2.12.0
Found existing installation: decorator 4.4.2
Uninstalling decorator-4.4.2:
Successfully uninstalled decorator-4.4.2
Found existing installation: six 1.12.0
Uninstalling six-1.12.0:
Successfully uninstalled six-1.12.0
Found existing installation: numpy 1.18.4
Uninstalling numpy-1.18.4:
Successfully uninstalled numpy-1.18.4
Found existing installation: h5py 2.10.0
Uninstalling h5py-2.10.0:
Successfully uninstalled h5py-2.10.0
Found existing installation: Pillow 7.0.0
Uninstalling Pillow-7.0.0:
Successfully uninstalled Pillow-7.0.0
Found existing installation: imageio 2.4.1
Uninstalling imageio-2.4.1:
Successfully uninstalled imageio-2.4.1
Found existing installation: kiwisolver 1.2.0
Uninstalling kiwisolver-1.2.0:
Successfully uninstalled kiwisolver-1.2.0
Found existing installation: python-dateutil 2.8.1
Uninstalling python-dateutil-2.8.1:
Successfully uninstalled python-dateutil-2.8.1
Found existing installation: pytz 2018.9
Uninstalling pytz-2018.9:
Successfully uninstalled pytz-2018.9
Found existing installation: pyparsing 2.4.7
Uninstalling pyparsing-2.4.7:
Successfully uninstalled pyparsing-2.4.7
Found existing installation: matplotlib 3.2.1
Uninstalling matplotlib-3.2.1:
Successfully uninstalled matplotlib-3.2.1
Found existing installation: networkx 2.4
Uninstalling networkx-2.4:
Successfully uninstalled networkx-2.4
Found existing installation: PyWavelets 1.1.1
Uninstalling PyWavelets-1.1.1:
Successfully uninstalled PyWavelets-1.1.1
Found existing installation: scipy 1.4.1
Uninstalling scipy-1.4.1:
Successfully uninstalled scipy-1.4.1
Found existing installation: scikit-image 0.16.2
Uninstalling scikit-image-0.16.2:
Successfully uninstalled scikit-image-0.16.2
Found existing installation: toolz 0.10.0
Uninstalling toolz-0.10.0:
Successfully uninstalled toolz-0.10.0
Found existing installation: torch 1.5.0+cu101
Uninstalling torch-1.5.0+cu101:
Successfully uninstalled torch-1.5.0+cu101
Found existing installation: torchvision 0.6.0+cu101
Uninstalling torchvision-0.6.0+cu101:
Successfully uninstalled torchvision-0.6.0+cu101
Successfully installed Cython-0.28.3 Pillow-5.1.0 PyWavelets-0.5.2 cloudpickle-0.5.3 dask-0.17.5 decorator-4.3.0 h5py-2.8.0 imageio-2.3.0 kiwisolver-1.0.1 matplotlib-2.2.2 networkx-2.1 numpy-1.14.4 pyparsing-2.2.0 python-dateutil-2.7.3 pytz-2018.4 scikit-image-0.14.0 scipy-1.1.0 six-1.11.0 toolz-0.9.0 torch-0.4.0 torchvision-0.2.1

!bash sg2im/scripts/download_models.sh

--2020-06-05 08:11:22-- https://storage.googleapis.com/sg2im-data/small/coco64.pt
Resolving storage.googleapis.com (storage.googleapis.com)... 173.194.79.128, 2a00:1450:4013:c05::80
Connecting to storage.googleapis.com (storage.googleapis.com)|173.194.79.128|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 119806264 (114M) [application/octet-stream]
Saving to: ‘sg2im-models/coco64.pt’

sg2im-models/coco64 100%[===================>] 114.26M 38.5MB/s in 3.0s

2020-06-05 08:11:25 (38.5 MB/s) - ‘sg2im-models/coco64.pt’ saved [119806264/119806264]

--2020-06-05 08:11:25-- https://storage.googleapis.com/sg2im-data/small/vg64.pt
Resolving storage.googleapis.com (storage.googleapis.com)... 108.177.119.128, 2a00:1450:4013:c00::80
Connecting to storage.googleapis.com (storage.googleapis.com)|108.177.119.128|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 119873465 (114M) [application/octet-stream]
Saving to: ‘sg2im-models/vg64.pt’

sg2im-models/vg64.p 100%[===================>] 114.32M 44.0MB/s in 2.6s

2020-06-05 08:11:29 (44.0 MB/s) - ‘sg2im-models/vg64.pt’ saved [119873465/119873465]

--2020-06-05 08:11:29-- https://storage.googleapis.com/sg2im-data/small/vg128.pt
Resolving storage.googleapis.com (storage.googleapis.com)... 74.125.128.128, 2a00:1450:4013:c02::80
Connecting to storage.googleapis.com (storage.googleapis.com)|74.125.128.128|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 129319241 (123M) [application/octet-stream]
Saving to: ‘sg2im-models/vg128.pt’

sg2im-models/vg128. 100%[===================>] 123.33M 54.2MB/s in 2.3s

2020-06-05 08:11:32 (54.2 MB/s) - ‘sg2im-models/vg128.pt’ saved [129319241/129319241]

训练与结果展示

!python3 sg2im/scripts/run_model.py --checkpoint sg2im-models/vg128.pt --scene_graphs sg2im/scene_graphs/figure_6_sheep.json --output_dir outputs

import matplotlib.pyplot as plt
import cv2
%matplotlib inline

img0 = cv2.imread("outputs/img000000.png")
img1 = cv2.imread("outputs/img000001.png")
img2 = cv2.imread("outputs/img000002.png")
img3 = cv2.imread("outputs/img000003.png")
img4 = cv2.imread("outputs/img000004.png")
img5 = cv2.imread("outputs/img000005.png")
img6 = cv2.imread("outputs/img000006.png")


plt.figure()
plt.subplot(3,3,1)
plt.imshow(img0)
plt.subplot(3,3,2)
plt.imshow(img1)
plt.subplot(3,3,3)
plt.imshow(img2)
plt.subplot(3,3,4)
plt.imshow(img3)
plt.subplot(3,3,5)
plt.imshow(img4)
plt.subplot(3,3,6)
plt.imshow(img5)
plt.subplot(3,3,7)
plt.imshow(img6)

<matplotlib.image.AxesImage at 0x7fa2bdfb36d8>

在这里插入图片描述

!python3 sg2im/scripts/run_model.py --checkpoint sg2im-models/vg128.pt --scene_graphs sg2im/scene_graphs/figure_6_street.json --output_dir outputs

import matplotlib.pyplot as plt
import cv2
%matplotlib inline

img0 = cv2.imread("outputs/img000000.png")
img1 = cv2.imread("outputs/img000001.png")
img2 = cv2.imread("outputs/img000002.png")
img3 = cv2.imread("outputs/img000003.png")
img4 = cv2.imread("outputs/img000004.png")
img5 = cv2.imread("outputs/img000005.png")
img6 = cv2.imread("outputs/img000006.png")


plt.figure()
plt.subplot(3,3,1)
plt.imshow(img0)
plt.subplot(3,3,2)
plt.imshow(img1)
plt.subplot(3,3,3)
plt.imshow(img2)
plt.subplot(3,3,4)
plt.imshow(img3)
plt.subplot(3,3,5)
plt.imshow(img4)
plt.subplot(3,3,6)
plt.imshow(img5)
plt.subplot(3,3,7)
plt.imshow(img6)

<matplotlib.image.AxesImage at 0x7fa2be14d1d0>

在这里插入图片描述

!python3 sg2im/scripts/run_model.py --checkpoint sg2im-models/vg128.pt --scene_graphs sg2im/scene_graphs/figure_5_vg.json --output_dir outputs

import matplotlib.pyplot as plt
import cv2
%matplotlib inline

img0 = cv2.imread("outputs/img000000.png")
img1 = cv2.imread("outputs/img000001.png")
img2 = cv2.imread("outputs/img000002.png")
img3 = cv2.imread("outputs/img000003.png")
img4 = cv2.imread("outputs/img000004.png")
img5 = cv2.imread("outputs/img000005.png")
img6 = cv2.imread("outputs/img000006.png")
img7 = cv2.imread("outputs/img000007.png")

plt.figure()
plt.subplot(3,3,1)
plt.imshow(img0)
plt.subplot(3,3,2)
plt.imshow(img1)
plt.subplot(3,3,3)
plt.imshow(img2)
plt.subplot(3,3,4)
plt.imshow(img3)
plt.subplot(3,3,5)
plt.imshow(img4)
plt.subplot(3,3,6)
plt.imshow(img5)
plt.subplot(3,3,7)
plt.imshow(img6)
plt.subplot(3,3,8)
plt.imshow(img7)

<matplotlib.image.AxesImage at 0x7fa2bdd710f0>

在这里插入图片描述

小结

到此这篇关于Python人工智能之sg2im文字转图像的文章就介绍到这了,更多相关Python 人工智能内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pytorch使用指定GPU训练的实例

    pytorch使用指定GPU训练的实例

    今天小编就为大家分享一篇pytorch使用指定GPU训练的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Pandas剔除混合数据中非数字的数据操作

    Pandas剔除混合数据中非数字的数据操作

    这篇文章主要介绍了Pandas剔除混合数据中非数字的数据操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python深入浅出分析enum枚举类

    Python深入浅出分析enum枚举类

    在python中枚举是一种类(Enum,IntEnum),存放在enum模块中。枚举类型可以给一组标签赋予一组特定的值,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-07-07
  • Python实现数据的序列化操作详解

    Python实现数据的序列化操作详解

    在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。本文就为大家详细讲解这两个模块的使用,需要的可以参考一下
    2022-07-07
  • Python实现的旋转数组功能算法示例

    Python实现的旋转数组功能算法示例

    这篇文章主要介绍了Python实现的旋转数组功能算法,结合实例形式总结分析了数组旋转算法的原理与实现技巧,需要的朋友可以参考下
    2019-02-02
  • 使用python 获取进程pid号的方法

    使用python 获取进程pid号的方法

    这篇文章主要介绍了使用python 获取进程pid号的方法,需要的朋友可以参考下
    2014-03-03
  • 一文读懂python Scrapy爬虫框架

    一文读懂python Scrapy爬虫框架

    这篇文章主要介绍了一文读懂python Scrapy爬虫框架的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • 基于python实现自动化办公学习笔记(CSV、word、Excel、PPT)

    基于python实现自动化办公学习笔记(CSV、word、Excel、PPT)

    这篇文章主要介绍了基于python实现自动化办公学习笔记,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • python利用后缀表达式实现计算器功能

    python利用后缀表达式实现计算器功能

    这篇文章主要为大家详细介绍了python利用后缀表达式实现计算器功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-02-02
  • 用Pelican搭建一个极简静态博客系统过程解析

    用Pelican搭建一个极简静态博客系统过程解析

    这篇文章主要介绍了用Pelican搭建一个极简静态博客系统过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08

最新评论