Python 详解通过Scrapy框架实现爬取百度新冠疫情数据流程

 更新时间:2021年11月10日 14:07:52   作者:剑客阿良_ALiang  
Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛,框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便

前言

闲来无聊,写了一个爬虫程序获取百度疫情数据。申明一下,研究而已。而且页面应该会进程做反爬处理,可能需要调整对应xpath。

Github仓库地址:代码仓库

本文主要使用的是scrapy框架。

环境部署

主要简单推荐一下

插件推荐

这里先推荐一个Google Chrome的扩展插件xpath helper,可以验证xpath语法是不是正确。

爬虫目标

需要爬取的页面:实时更新:新型冠状病毒肺炎疫情地图

主要爬取的目标选取了全国的数据以及各个身份的数据。

项目创建

使用scrapy命令创建项目

scrapy startproject yqsj

webdriver部署

这里就不重新讲一遍了,可以参考我这篇文章的部署方法:Python 详解通过Scrapy框架实现爬取CSDN全站热榜标题热词流程

项目代码

开始撸代码,看一下百度疫情省份数据的问题。

页面需要点击展开全部span。所以在提取页面源码的时候需要模拟浏览器打开后,点击该按钮。所以按照这个方向,我们一步步来。

Item定义

定义两个类YqsjProvinceItem和YqsjChinaItem,分别定义国内省份数据和国内数据。

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
 
import scrapy
 
 
class YqsjProvinceItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    location = scrapy.Field()
    new = scrapy.Field()
    exist = scrapy.Field()
    total = scrapy.Field()
    cure = scrapy.Field()
    dead = scrapy.Field()
 
 
class YqsjChinaItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    # 现有确诊
    exist_diagnosis = scrapy.Field()
    # 无症状
    asymptomatic = scrapy.Field()
    # 现有疑似
    exist_suspecte = scrapy.Field()
    # 现有重症
    exist_severe = scrapy.Field()
    # 累计确诊
    cumulative_diagnosis = scrapy.Field()
    # 境外输入
    overseas_input = scrapy.Field()
    # 累计治愈
    cumulative_cure = scrapy.Field()
    # 累计死亡
    cumulative_dead = scrapy.Field()

中间件定义

需要打开页面后点击一下展开全部。

完整代码

# Define here the models for your spider middleware
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
 
from scrapy import signals
 
# useful for handling different item types with a single interface
from itemadapter import is_item, ItemAdapter
from scrapy.http import HtmlResponse
from selenium.common.exceptions import TimeoutException
from selenium.webdriver import ActionChains
import time
 
 
class YqsjSpiderMiddleware:
    # Not all methods need to be defined. If a method is not defined,
    # scrapy acts as if the spider middleware does not modify the
    # passed objects.
 
    @classmethod
    def from_crawler(cls, crawler):
        # This method is used by Scrapy to create your spiders.
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
        return s
 
    def process_spider_input(self, response, spider):
        # Called for each response that goes through the spider
        # middleware and into the spider.
 
        # Should return None or raise an exception.
        return None
 
    def process_spider_output(self, response, result, spider):
        # Called with the results returned from the Spider, after
        # it has processed the response.
 
        # Must return an iterable of Request, or item objects.
        for i in result:
            yield i
 
    def process_spider_exception(self, response, exception, spider):
        # Called when a spider or process_spider_input() method
        # (from other spider middleware) raises an exception.
 
        # Should return either None or an iterable of Request or item objects.
        pass
 
    def process_start_requests(self, start_requests, spider):
        # Called with the start requests of the spider, and works
        # similarly to the process_spider_output() method, except
        # that it doesn't have a response associated.
 
        # Must return only requests (not items).
        for r in start_requests:
            yield r
 
    def spider_opened(self, spider):
        spider.logger.info('Spider opened: %s' % spider.name)
 
 
class YqsjDownloaderMiddleware:
    # Not all methods need to be defined. If a method is not defined,
    # scrapy acts as if the downloader middleware does not modify the
    # passed objects.
 
    @classmethod
    def from_crawler(cls, crawler):
        # This method is used by Scrapy to create your spiders.
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
        return s
 
    def process_request(self, request, spider):
        # Called for each request that goes through the downloader
        # middleware.
 
        # Must either:
        # - return None: continue processing this request
        # - or return a Response object
        # - or return a Request object
        # - or raise IgnoreRequest: process_exception() methods of
        #   installed downloader middleware will be called
        # return None
        try:
            spider.browser.get(request.url)
            spider.browser.maximize_window()
            time.sleep(2)
            spider.browser.find_element_by_xpath("//*[@id='nationTable']/div/span").click()
            # ActionChains(spider.browser).click(searchButtonElement)
            time.sleep(5)
            return HtmlResponse(url=spider.browser.current_url, body=spider.browser.page_source,
                                encoding="utf-8", request=request)
        except TimeoutException as e:
            print('超时异常:{}'.format(e))
            spider.browser.execute_script('window.stop()')
        finally:
            spider.browser.close()
 
    def process_response(self, request, response, spider):
        # Called with the response returned from the downloader.
 
        # Must either;
        # - return a Response object
        # - return a Request object
        # - or raise IgnoreRequest
        return response
 
    def process_exception(self, request, exception, spider):
        # Called when a download handler or a process_request()
        # (from other downloader middleware) raises an exception.
 
        # Must either:
        # - return None: continue processing this exception
        # - return a Response object: stops process_exception() chain
        # - return a Request object: stops process_exception() chain
        pass
 
    def spider_opened(self, spider):
        spider.logger.info('Spider opened: %s' % spider.name)

定义爬虫

分别获取国内疫情数据以及省份疫情数据。完整代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2021/11/7 22:05
# @Author  : 至尊宝
# @Site    : 
# @File    : baidu_yq.py
 
import scrapy
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
 
from yqsj.items import YqsjChinaItem, YqsjProvinceItem
 
 
class YqsjSpider(scrapy.Spider):
    name = 'yqsj'
    # allowed_domains = ['blog.csdn.net']
    start_urls = ['https://voice.baidu.com/act/newpneumonia/newpneumonia#tab0']
    china_xpath = "//div[contains(@class, 'VirusSummarySix_1-1-317_2ZJJBJ')]/text()"
    province_xpath = "//*[@id='nationTable']/table/tbody/tr[{}]/td/text()"
    province_xpath_1 = "//*[@id='nationTable']/table/tbody/tr[{}]/td/div/span/text()"
 
    def __init__(self):
        chrome_options = Options()
        chrome_options.add_argument('--headless')  # 使用无头谷歌浏览器模式
        chrome_options.add_argument('--disable-gpu')
        chrome_options.add_argument('--no-sandbox')
        self.browser = webdriver.Chrome(chrome_options=chrome_options,
                                        executable_path="E:\\chromedriver_win32\\chromedriver.exe")
        self.browser.set_page_load_timeout(30)
 
    def parse(self, response, **kwargs):
        country_info = response.xpath(self.china_xpath)
        yq_china = YqsjChinaItem()
        yq_china['exist_diagnosis'] = country_info[0].get()
        yq_china['asymptomatic'] = country_info[1].get()
        yq_china['exist_suspecte'] = country_info[2].get()
        yq_china['exist_severe'] = country_info[3].get()
        yq_china['cumulative_diagnosis'] = country_info[4].get()
        yq_china['overseas_input'] = country_info[5].get()
        yq_china['cumulative_cure'] = country_info[6].get()
        yq_china['cumulative_dead'] = country_info[7].get()
        yield yq_china
        
        # 遍历35个地区
        for x in range(1, 35):
            path = self.province_xpath.format(x)
            path1 = self.province_xpath_1.format(x)
            province_info = response.xpath(path)
            province_name = response.xpath(path1)
            yq_province = YqsjProvinceItem()
            yq_province['location'] = province_name.get()
            yq_province['new'] = province_info[0].get()
            yq_province['exist'] = province_info[1].get()
            yq_province['total'] = province_info[2].get()
            yq_province['cure'] = province_info[3].get()
            yq_province['dead'] = province_info[4].get()
            yield yq_province

pipeline输出结果文本

将结果按照一定的文本格式输出出来。完整代码:

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
 
 
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
 
from yqsj.items import YqsjChinaItem, YqsjProvinceItem
 
 
class YqsjPipeline:
    def __init__(self):
        self.file = open('result.txt', 'w', encoding='utf-8')
 
    def process_item(self, item, spider):
        if isinstance(item, YqsjChinaItem):
            self.file.write(
                "国内疫情\n现有确诊\t{}\n无症状\t{}\n现有疑似\t{}\n现有重症\t{}\n累计确诊\t{}\n境外输入\t{}\n累计治愈\t{}\n累计死亡\t{}\n".format(
                    item['exist_diagnosis'],
                    item['asymptomatic'],
                    item['exist_suspecte'],
                    item['exist_severe'],
                    item['cumulative_diagnosis'],
                    item['overseas_input'],
                    item['cumulative_cure'],
                    item['cumulative_dead']))
        if isinstance(item, YqsjProvinceItem):
            self.file.write(
                "省份:{}\t新增:{}\t现有:{}\t累计:{}\t治愈:{}\t死亡:{}\n".format(
                    item['location'],
                    item['new'],
                    item['exist'],
                    item['total'],
                    item['cure'],
                    item['dead']))
        return item
 
    def close_spider(self, spider):
        self.file.close()

配置文件改动

直接参考,自行调整:

# Scrapy settings for yqsj project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html
 
BOT_NAME = 'yqsj'
 
SPIDER_MODULES = ['yqsj.spiders']
NEWSPIDER_MODULE = 'yqsj.spiders'
 
 
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'yqsj (+http://www.yourdomain.com)'
USER_AGENT = 'Mozilla/5.0'
 
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
 
# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32
 
# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16
 
# Disable cookies (enabled by default)
COOKIES_ENABLED = False
 
# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False
 
# Override the default request headers:
DEFAULT_REQUEST_HEADERS = {
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    'Accept-Language': 'en',
    'User-Agent': 'Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.94 Safari/537.36'
}
 
# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
SPIDER_MIDDLEWARES = {
   'yqsj.middlewares.YqsjSpiderMiddleware': 543,
}
 
# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
DOWNLOADER_MIDDLEWARES = {
   'yqsj.middlewares.YqsjDownloaderMiddleware': 543,
}
 
# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}
 
# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'yqsj.pipelines.YqsjPipeline': 300,
}
 
# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False
 
# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

验证结果

看看结果文件

总结

emmmm,闲着无聊,写着玩,没啥好总结的。

分享:

修心,亦是修行之一。顺境修力,逆境修心,缺一不可。 ——《剑来》

如果本文对你有作用的话,不要吝啬你的赞,谢谢。

以上就是Python 详解通过Scrapy框架实现爬取百度新冠疫情数据流程的详细内容,更多关于Python Scrapy框架的资料请关注脚本之家其它相关文章!

相关文章

  • 实例讲解python函数式编程

    实例讲解python函数式编程

    这篇文章主要介绍了python函数式编程实例,使用一个例子来阐述python函数式编程,需要的朋友可以参考下
    2014-06-06
  • Pycharm最全报错的原因与解决方法总结(推荐!)

    Pycharm最全报错的原因与解决方法总结(推荐!)

    这篇文章主要给大家介绍了关于Pycharm最全报错的原因与解决方法的相关资料,文中记录了Python各种报错解释及处理方法,属于个人记录型,需要的朋友可以参考下
    2022-07-07
  • pandas dataframe统计填充空值方式

    pandas dataframe统计填充空值方式

    这篇文章主要介绍了pandas dataframe统计填充空值方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • Python输入输出从键盘到文件实战全面指南

    Python输入输出从键盘到文件实战全面指南

    这篇文章主要为大家介绍了Python输入输出从键盘到文件实战全面指南,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-11-11
  • python用分数表示矩阵的方法实例

    python用分数表示矩阵的方法实例

    这篇文章主要给大家介绍了关于python如何利用分数表示矩阵的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • Python下利用BeautifulSoup解析HTML的实现

    Python下利用BeautifulSoup解析HTML的实现

    这篇文章主要介绍了Python下利用BeautifulSoup解析HTML的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-01-01
  • 使用python实现对元素的长截图功能

    使用python实现对元素的长截图功能

    这篇文章主要介绍了用python实现对元素的长截图功能,非常不错,具有一定的参考借鉴价值,需要的朋友参考下吧
    2019-11-11
  • Python数据结构之栈详解

    Python数据结构之栈详解

    栈和队列是在程序设计中常见的数据类型,从数据结构的角度来讲,栈和队列也是线性表,是操作受限的线性表。本文将详细介绍一下Python中的栈,感兴趣的可以了解一下
    2022-03-03
  • 详解python解压压缩包的五种方法

    详解python解压压缩包的五种方法

    这里讨论下使用Python解压五种压缩文件,.gz .tar .tgz .zip .rar的相关知识,文中给大家介绍了python实现rar文件解压的方法,感兴趣的朋友跟随小编一起看看吧
    2019-07-07
  • Python编程使用matplotlib挑钻石seaborn画图入门教程

    Python编程使用matplotlib挑钻石seaborn画图入门教程

    这篇文章主要为大家介绍了Python编程中使用matplotlib绘图包来挑出完美的钻石,本篇是seaborn包画图使用入门篇,有需要的朋友可以借鉴参考下
    2021-10-10

最新评论