TensorFlow人工智能学习Keras高层接口应用示例

 更新时间:2021年11月11日 09:15:20   作者:Swayzzu  
这篇文章主要为大家介绍了TensorFlow人工智能学习中Keras高层接口的应用示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步

1.metrics

keras.metrics可以用来对数据进行记录跟踪,当我们的数据量太大,又想在中间就看看训练的情况的时候,可以使用此接口。步骤如下:

①创建Meter

通过metrics中带有的借口,创建一个meter。

②更新数据

当我们在某一行代码得到了需要的数据的时候,就可以调用update_state方法,将数据进行更新。注意,不同的方法需要传入的参数是不一样的。

③获取数据

我们可以设置在某个节点或状态的时候,获取当前的meter所存储的数据。

④重置状态

当一个阶段数据记录查看结束后,使用reset_states重置meter,记录下一阶段。

2.快捷训练

生成了一个模型之后,有compile, fit, evalute, predict等接口可以调用,这可以使得我们的训练很容易实现。

①compile

这个方法中可以指定:优化器+lr,损失,准确率等。

②fit

完成compile之后,直接调用fit,给出训练数据,指定epoch就可以了。

以上两行,就可以直接完成训练,训练过程中会返回一些基本信息,训练周期,数据量,使用的时间,每一步使用的时间,每一个周期后的损失值等。

fit中还可以给出validation_data = test_data, validation_freq=2,也就是循环2次训练,就进行一次测试,会打印出测试分数。可见下面情况已经过拟合了。

③evaluate

调用这个方式之后,会在训练完成后,进行测试,并打印出测试结果。

④predict

这个其实和network(x)是一样的,就是完成前向传播。

以上就是TensorFlow人工智能Keras高层接口应用示例的详细内容,更多关于TensorFlow人工智能Keras高层接口的资料请关注脚本之家其它相关文章!

相关文章

最新评论