Python语言实现SIFT算法

 更新时间:2021年11月15日 08:57:59   作者:米开朗琪罗儿  
SIFT,即尺度不变特征变换,是用于图像处理领域的一种描述,本文重点给大家介绍Python语言实现SIFT算法,感兴趣的朋友一起看看吧

本文侧重于如何使用Python语言实现SIFT算法

所有程序已打包基于OpenCV-Python的SIFT算法的实现

一、什么是SIFT算法

  SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。

二、准备工作

2.1 实验设备

  本文在Windows10系统上,使用pycharm软件完成所有实验。

2.2 OpenCV安装

  我们可以使用OpenCV库中的cv2.xfeatures2d.SIFT_create()函数实现SIFT,但由于专利保护,很多版本的OpenCV库已无法提供该函数,目前仅3.4.2.16版本的OpenCV库可使用此函数。

安装教程
  (1)查看当前版本opencv:进入cmd(组合键win+R,输入cmd),输入conda list,查看当前pycharm所有库并找到opencv-python,若找不到库,说明没有安装。
  (2)卸载原版本(在cmd中输入:pip uninstall opencv
  (3)安装新版本(在cmd中输入:pip install opencv-python==3.4.2.16 -i "https://pypi.doubanio.com/simple/"
  (4)安装附属库(在cmd中输入:pip install opencv-contrib-python==3.4.2.16 -i "https://pypi.doubanio.com/simple/"

三、实验工作

3.1 图像选择

  这里选择经典的lena图像作为实验对象,为了选择一个待匹配图像,本文使用如下代码对lena图像进行逆时针45°旋转。

from PIL import Image

img = Image.open('lena.png')
img2 = img.rotate(45)       # 逆时针旋转45°
img2.save("lena_rot45.png")
img2.show()

参考图像与待匹配图像(即旋转图像)如下图所示:

在这里插入图片描述

3.2 程序实现

"""
图像匹配——SIFT点特征匹配实现步骤:
    (1)读取图像;
    (2)定义sift算子;
    (3)通过sift算子对需要匹配的图像进行特征点获取;
        a.可获取各匹配图像经过sift算子的特征点数目
    (4)可视化特征点(在原图中标记为圆圈);
        a.为方便观察,可将匹配图像横向拼接
    (5)图像匹配(特征点匹配);
        a.通过调整ratio获取需要进行图像匹配的特征点数量(ratio值越大,匹配的线条越密集,但错误匹配点也会增多)
        b.通过索引ratio选择固定的特征点进行图像匹配
    (6)将待匹配图像通过旋转、变换等方式将其与目标图像对齐
"""

import cv2              # opencv版本需为3.4.2.16
import numpy as np      # 矩阵运算库
import time             # 时间库

original_lena = cv2.imread('lena.png')          # 读取lena原图
lena_rot45 = cv2.imread('lena_rot45.png')       # 读取lena旋转45°图

sift = cv2.xfeatures2d.SIFT_create()

# 获取各个图像的特征点及sift特征向量
# 返回值kp包含sift特征的方向、位置、大小等信息;des的shape为(sift_num, 128), sift_num表示图像检测到的sift特征数量
(kp1, des1) = sift.detectAndCompute(original_lena, None)
(kp2, des2) = sift.detectAndCompute(lena_rot45, None)

# 特征点数目显示
print("=========================================")
print("=========================================")
print('lena 原图  特征点数目:', des1.shape[0])
print('lena 旋转图 特征点数目:', des2.shape[0])
print("=========================================")
print("=========================================")

# 举例说明kp中的参数信息
for i in range(2):
    print("关键点", i)
    print("数据类型:", type(kp1[i]))
    print("关键点坐标:", kp1[i].pt)
    print("邻域直径:", kp1[i].size)
    print("方向:", kp1[i].angle)
    print("所在的图像金字塔的组:", kp1[i].octave)

print("=========================================")
print("=========================================")
"""
首先对原图和旋转图进行特征匹配,即图original_lena和图lena_rot45
"""
# 绘制特征点,并显示为红色圆圈
sift_original_lena = cv2.drawKeypoints(original_lena, kp1, original_lena, color=(255, 0, 255))
sift_lena_rot45 = cv2.drawKeypoints(lena_rot45, kp2, lena_rot45, color=(255, 0, 255))

sift_cat1 = np.hstack((sift_original_lena, sift_lena_rot45))        # 对提取特征点后的图像进行横向拼接
cv2.imwrite("sift_cat1.png", sift_cat1)
print('原图与旋转图 特征点绘制图像已保存')
cv2.imshow("sift_point1", sift_cat1)
cv2.waitKey()

# 特征点匹配
# K近邻算法求取在空间中距离最近的K个数据点,并将这些数据点归为一类
start = time.time()     # 计算匹配点匹配时间
bf = cv2.BFMatcher()
matches1 = bf.knnMatch(des1, des2, k=2)
print('用于 原图和旋转图 图像匹配的所有特征点数目:', len(matches1))

# 调整ratio
# ratio=0.4:对于准确度要求高的匹配;
# ratio=0.6:对于匹配点数目要求比较多的匹配;
# ratio=0.5:一般情况下。
ratio1 = 0.5
good1 = []

for m1, n1 in matches1:
    # 如果最接近和次接近的比值大于一个既定的值,那么我们保留这个最接近的值,认为它和其匹配的点为good_match
    if m1.distance < ratio1 * n1.distance:
        good1.append([m1])

end = time.time()
print("匹配点匹配运行时间:%.4f秒" % (end-start))

# 通过对good值进行索引,可以指定固定数目的特征点进行匹配,如good[:20]表示对前20个特征点进行匹配
match_result1 = cv2.drawMatchesKnn(original_lena, kp1, lena_rot45, kp2, good1, None, flags=2)
cv2.imwrite("match_result1.png", match_result1)

print('原图与旋转图 特征点匹配图像已保存')
print("=========================================")
print("=========================================")
print("原图与旋转图匹配对的数目:", len(good1))

for i in range(2):
    print("匹配", i)
    print("数据类型:", type(good1[i][0]))
    print("描述符之间的距离:", good1[i][0].distance)
    print("查询图像中描述符的索引:", good1[i][0].queryIdx)
    print("目标图像中描述符的索引:", good1[i][0].trainIdx)

print("=========================================")
print("=========================================")
cv2.imshow("original_lena and lena_rot45 feature matching result", match_result1)
cv2.waitKey()

# 将待匹配图像通过旋转、变换等方式将其与目标图像对齐,这里使用单应性矩阵。
# 单应性矩阵有八个参数,如果要解这八个参数的话,需要八个方程,由于每一个对应的像素点可以产生2个方程(x一个,y一个),那么总共只需要四个像素点就能解出这个单应性矩阵。
if len(good1) > 4:
    ptsA = np.float32([kp1[m[0].queryIdx].pt for m in good1]).reshape(-1, 1, 2)
    ptsB = np.float32([kp2[m[0].trainIdx].pt for m in good1]).reshape(-1, 1, 2)
    ransacReprojThreshold = 4
    # RANSAC算法选择其中最优的四个点
    H, status =cv2.findHomography(ptsA, ptsB, cv2.RANSAC, ransacReprojThreshold)
    imgout = cv2.warpPerspective(lena_rot45, H, (original_lena.shape[1], original_lena.shape[0]),
                                 flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)

    cv2.imwrite("imgout.png", imgout)
    cv2.imshow("lena_rot45's result after transformation", imgout)
    cv2.waitKey()

3.3 程序结果

在这里插入图片描述

到此这篇关于Python语言实现SIFT算法的文章就介绍到这了,更多相关python SIFT算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 小小聊天室Python代码实现

    小小聊天室Python代码实现

    这篇文章主要为大家详细介绍了小小聊天室Python具体的实现代码,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-08-08
  • 举例区分Python中的浅复制与深复制

    举例区分Python中的浅复制与深复制

    这篇文章主要介绍了举例区分Python中的浅复制与深复制,是Python入门学习中的重要知识,需要的朋友可以参考下
    2015-07-07
  • 利用OpenCV给彩色图像添加椒盐噪声的方法

    利用OpenCV给彩色图像添加椒盐噪声的方法

    椒盐噪声是数字图像中的常见噪声,一般是图像传感器、传输信道及解码处理等产生的黑白相间的亮暗点噪声,椒盐噪声常由图像切割产生,这篇文章主要给大家介绍了关于利用OpenCV给彩色图像添加椒盐噪声的相关资料,需要的朋友可以参考下
    2021-10-10
  • python迭代dict的key和value的方法

    python迭代dict的key和value的方法

    今天小编就为大家分享一篇python迭代dict的key和value的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • 基于python进行抽样分布描述及实践详解

    基于python进行抽样分布描述及实践详解

    这篇文章主要介绍了基于python进行抽样分布描述及实践详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • pyspark dataframe列的合并与拆分实例

    pyspark dataframe列的合并与拆分实例

    这篇文章主要介绍了pyspark dataframe列的合并与拆分实例,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-03-03
  • 安装pytorch时报sslerror错误的解决方案

    安装pytorch时报sslerror错误的解决方案

    这篇文章主要介绍了安装pytorch时报sslerror错误的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Python使用Srapy框架爬虫模拟登陆并抓取知乎内容

    Python使用Srapy框架爬虫模拟登陆并抓取知乎内容

    这里我们来看如何通过Python使用Srapy框架爬虫模拟登陆并抓取知乎内容的实例,要实现持续的爬取需要利用到cookie的保存,我们首先还是来回顾一下cookie的相关知识点:
    2016-07-07
  • 深入理解Python分布式爬虫原理

    深入理解Python分布式爬虫原理

    本篇文章主要介绍了深入理解Python分布式爬虫原理,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-11-11
  • Python爬取网页信息的示例

    Python爬取网页信息的示例

    这篇文章主要介绍了Python爬取网页信息的示例,帮助大家更好的理解和学习python 爬虫,感兴趣的朋友可以了解下
    2020-09-09

最新评论