利用python做数据拟合详情

 更新时间:2022年01月24日 12:58:49   作者:图様  
这篇文章主要介绍了利用python做数据拟合,下面文章围绕如何让利用python做数据拟合的相关资料展开详细内容,需要的朋友可以参考一下,希望对大家有所帮助

1、例子:拟合一种函数Func,此处为一个指数函数。

出处:

SciPy v1.1.0 Reference Guide

#Header
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

#Define a function(here a exponential function is used)
def func(x, a, b, c):
 return a * np.exp(-b * x) + c

#Create the data to be fit with some noise
xdata = np.linspace(0, 4, 50)
y = func(xdata, 2.5, 1.3, 0.5)
np.random.seed(1729)
y_noise = 0.2 * np.random.normal(size=xdata.size)
ydata = y + y_noise
plt.plot(xdata, ydata, 'bo', label='data')

#Fit for the parameters a, b, c of the function func:
popt, pcov = curve_fit(func, xdata, ydata)
popt #output: array([ 2.55423706, 1.35190947, 0.47450618])
plt.plot(xdata, func(xdata, *popt), 'r-',
 label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

#In the case of parameters a,b,c need be constrainted
#Constrain the optimization to the region of 
#0 <= a <= 3, 0 <= b <= 1 and 0 <= c <= 0.5
popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5]))
popt #output: array([ 2.43708906, 1. , 0.35015434])
plt.plot(xdata, func(xdata, *popt), 'g--',
 label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

#Labels
plt.title("Exponential Function Fitting")
plt.xlabel('x coordinate')
plt.ylabel('y coordinate')
plt.legend()
leg = plt.legend()  # remove the frame of Legend, personal choice
leg.get_frame().set_linewidth(0.0) # remove the frame of Legend, personal choice
#leg.get_frame().set_edgecolor('b') # change the color of Legend frame
#plt.show()

#Export figure
#plt.savefig('fit1.eps', format='eps', dpi=1000)
plt.savefig('fit1.pdf', format='pdf', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')
plt.savefig('fit1.jpg', format='jpg', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')

上面一段代码可以直接在spyder中运行。得到的JPG导出图如下:

2. 例子:拟合一个Gaussian函数

出处:LMFIT: Non-Linear Least-Squares Minimization and Curve-Fitting for Python

#Header
import numpy as np
import matplotlib.pyplot as plt
from numpy import exp, linspace, random
from scipy.optimize import curve_fit

#Define the Gaussian function
def gaussian(x, amp, cen, wid):
 return amp * exp(-(x-cen)**2 / wid)

#Create the data to be fitted
x = linspace(-10, 10, 101)
y = gaussian(x, 2.33, 0.21, 1.51) + random.normal(0, 0.2, len(x))
np.savetxt ('data.dat',[x,y])  #[x,y] is is saved as a matrix of 2 lines

#Set the initial(init) values of parameters need to optimize(best)
init_vals = [1, 0, 1] # for [amp, cen, wid]

#Define the optimized values of parameters
best_vals, covar = curve_fit(gaussian, x, y, p0=init_vals)
print(best_vals) # output: array [2.27317256  0.20682276  1.64512305]

#Plot the curve with initial parameters and optimized parameters
y1 = gaussian(x, *best_vals) #best_vals, '*'is used to read-out the values in the array
y2 = gaussian(x, *init_vals) #init_vals
plt.plot(x, y, 'bo',label='raw data')
plt.plot(x, y1, 'r-',label='best_vals')
plt.plot(x, y2, 'k--',label='init_vals')
#plt.show()

#Labels
plt.title("Gaussian Function Fitting")
plt.xlabel('x coordinate')
plt.ylabel('y coordinate')
plt.legend()
leg = plt.legend()  # remove the frame of Legend, personal choice
leg.get_frame().set_linewidth(0.0) # remove the frame of Legend, personal choice
#leg.get_frame().set_edgecolor('b') # change the color of Legend frame
#plt.show()

#Export figure
#plt.savefig('fit2.eps', format='eps', dpi=1000)
plt.savefig('fit2.pdf', format='pdf', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')
plt.savefig('fit2.jpg', format='jpg', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')

上面一段代码可以直接在spyder中运行。得到的JPG导出图如下:

3. 用一个lmfit的包来实现2中的Gaussian函数拟合

需要下载lmfit这个包,下载地址:

https://pypi.org/project/lmfit/#files

下载下来的文件是.tar.gz格式,在MacOS及Linux命令行中解压,指令:

将其中的lmfit文件夹复制到当前project目录下。

上述例子2中生成了data.dat,用来作为接下来的方法中的原始数据。

 出处:

Modeling Data and Curve Fitting

#Header
import numpy as np
import matplotlib.pyplot as plt
from numpy import exp, loadtxt, pi, sqrt
from lmfit import Model

#Import the data and define x, y and the function
data = loadtxt('data.dat')
x = data[0, :]
y = data[1, :]
def gaussian1(x, amp, cen, wid):
 return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))

#Fitting
gmodel = Model(gaussian1)
result = gmodel.fit(y, x=x, amp=5, cen=5, wid=1) #Fit from initial values (5,5,1)
print(result.fit_report())

#Plot
plt.plot(x, y, 'bo',label='raw data')
plt.plot(x, result.init_fit, 'k--',label='init_fit')
plt.plot(x, result.best_fit, 'r-',label='best_fit')
#plt.show()


#Labels
plt.title("Gaussian Function Fitting")
plt.xlabel('x coordinate')
plt.ylabel('y coordinate')
plt.legend()
leg = plt.legend()  # remove the frame of Legend, personal choice
leg.get_frame().set_linewidth(0.0) # remove the frame of Legend, personal choice
#leg.get_frame().set_edgecolor('b') # change the color of Legend frame
#plt.show()

#Export figure
#plt.savefig('fit3.eps', format='eps', dpi=1000)
plt.savefig('fit3.pdf', format='pdf', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')
plt.savefig('fit3.jpg', format='jpg', dpi=1000, figsize=(8, 6), facecolor='w', edgecolor='k')

上面这一段代码需要按指示下载lmfit包,并且读取例子2中生成的data.dat

得到的JPG导出图如下:

到此这篇关于利用python做数据拟合详情的文章就介绍到这了,更多相关python做数据拟合内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python实现在多维数组中挑选符合条件的全部元素

    python实现在多维数组中挑选符合条件的全部元素

    今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • 解决Python中定时任务线程无法自动退出的问题

    解决Python中定时任务线程无法自动退出的问题

    今天小编就为大家分享一篇解决Python中定时任务线程无法自动退出的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • wxPython实现文本框基础组件

    wxPython实现文本框基础组件

    这篇文章主要介绍了wxPython实现文本框基础组件,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-11-11
  • 在Mac中PyCharm配置python Anaconda环境过程图解

    在Mac中PyCharm配置python Anaconda环境过程图解

    这篇文章主要介绍了在Mac中PyCharm配置python Anaconda环境过程图解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • python分治法求二维数组局部峰值方法

    python分治法求二维数组局部峰值方法

    下面小编就为大家分享一篇python分治法求二维数组局部峰值方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Queue队列中join()与task_done()的关系及说明

    Queue队列中join()与task_done()的关系及说明

    这篇文章主要介绍了Queue队列中join()与task_done()的关系及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • django和vue实现数据交互的方法

    django和vue实现数据交互的方法

    今天小编就为大家分享一篇django和vue实现数据交互的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • 详解python的网络编程基础

    详解python的网络编程基础

    这篇文章主要为大家介绍了python网络编程的基础,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-01-01
  • Python中匹配模糊的字符串问题分析

    Python中匹配模糊的字符串问题分析

    这篇文章主要介绍了Python中匹配模糊的字符串的过程,我们将学习如何使用process 模块,该模块允许我们在模糊字符串逻辑的帮助下有效地匹配或提取字符串,需要的朋友可以参考下
    2023-09-09
  • Python 窗体(tkinter)下拉列表框(Combobox)实例

    Python 窗体(tkinter)下拉列表框(Combobox)实例

    这篇文章主要介绍了Python 窗体(tkinter)下拉列表框(Combobox)实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03

最新评论