Python实现对图像加噪(高斯噪声 椒盐噪声)

 更新时间:2021年11月24日 09:40:31   作者:骊山道童  
这篇文章主要介绍了展示通过Python给图像叠加不同等级的椒盐噪声和高斯噪声的代码,相应的叠加噪声的已编为对应的类,可实例化使用。感兴趣的同学可以看看

内容简介

展示如何给图像叠加不同等级的椒盐噪声和高斯噪声的代码,相应的叠加噪声的已编为对应的类,可实例化使用。以下主要展示自己编写的:

加噪声的代码(高斯噪声,椒盐噪声)

add_noise.py

#代码中的noisef为信号等级,例如我需要0.7的噪声,传入参数我传入的是1-0.7
from PIL import Image
import numpy as np
import random

import torchvision.transforms as transforms

norm_mean = (0.5, 0.5, 0.5)
norm_std = (0.5, 0.5, 0.5)
class AddPepperNoise(object):
    """增加椒盐噪声
    Args:
        snr (float): Signal Noise Rate
        p (float): 概率值,依概率执行该操作
    """

    def __init__(self, snr, p=0.9):
        assert isinstance(snr, float) and (isinstance(p, float))    # 2020 07 26 or --> and
        self.snr = snr
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): PIL Image
        Returns:
            PIL Image: PIL image.
        """
        if random.uniform(0, 1) < self.p:
            img_ = np.array(img).copy()
            h, w, c = img_.shape
            signal_pct = self.snr
            noise_pct = (1 - self.snr)
            mask = np.random.choice((0, 1, 2), size=(h, w, 1), p=[signal_pct, noise_pct/2., noise_pct/2.])
            mask = np.repeat(mask, c, axis=2)
            img_[mask == 1] = 255   # 盐噪声
            img_[mask == 2] = 0     # 椒噪声
            return Image.fromarray(img_.astype('uint8')).convert('RGB')
        else:
            return img

class Gaussian_noise(object):
    """增加高斯噪声
    此函数用将产生的高斯噪声加到图片上
    传入:
        img   :  原图
        mean  :  均值
        sigma :  标准差
    返回:
        gaussian_out : 噪声处理后的图片
    """

    def __init__(self, mean, sigma):

        self.mean = mean
        self.sigma = sigma

    def __call__(self, img):
        """
        Args:
            img (PIL Image): PIL Image
        Returns:
            PIL Image: PIL image.
        """
        # 将图片灰度标准化
        img_ = np.array(img).copy()
        img_ = img_ / 255.0
        # 产生高斯 noise
        noise = np.random.normal(self.mean, self.sigma, img_.shape)
        # 将噪声和图片叠加
        gaussian_out = img_ + noise
        # 将超过 1 的置 1,低于 0 的置 0
        gaussian_out = np.clip(gaussian_out, 0, 1)
        # 将图片灰度范围的恢复为 0-255
        gaussian_out = np.uint8(gaussian_out*255)
        # 将噪声范围搞为 0-255
        # noise = np.uint8(noise*255)
        return Image.fromarray(gaussian_out).convert('RGB')

def image_transform(noisef):
    """对训练集和测试集的图片作预处理转换
        train_transform:加噪图
        _train_transform:原图(不加噪)
        test_transform:测试图(不加噪)
    """
    train_transform = transforms.Compose([
        transforms.Resize((256, 256)),  # 重设大小
        #transforms.RandomCrop(32,padding=4),
        AddPepperNoise(noisef, p=0.9),                 #加椒盐噪声

        #Gaussian_noise(0, noisef),  # 加高斯噪声

        transforms.ToTensor(),  # 转换为张量
        # transforms.Normalize(norm_mean,norm_std),
    ])
    _train_transform = transforms.Compose([
        transforms.Resize((256, 256)),
        #transforms.RandomCrop(32,padding=4),
        transforms.ToTensor(),
        # transforms.Normalize(norm_mean,norm_std),

    ])
    test_transform = transforms.Compose([
        transforms.Resize((256, 256)),
        #transforms.RandomCrop(32,padding=4),
        transforms.ToTensor(),
        # transforms.Normalize(norm_mean,norm_std),

    ])
    return train_transform, _train_transform, test_transform

在pytorch中如何使用

# 图像变换和加噪声train_transform为加噪图,_train_transform为原图,test_transform为测试图   noisef为传入的噪声等级
train_transform,_train_transform,test_transform = image_transform(noisef)

training_data=FabricDataset_file(data_dir=train_dir,transform=train_transform)
_training_data=FabricDataset_file(data_dir=_train_dir,transform=_train_transform)
testing_data=FabricDataset_file(data_dir=test_dir,transform=test_transform) 

补充

图像添加随机噪声

随机噪声就是通过随机函数在图像上随机地添加噪声点

def random_noise(image,noise_num):
    '''
    添加随机噪点(实际上就是随机在图像上将像素点的灰度值变为255即白色)
    :param image: 需要加噪的图片
    :param noise_num: 添加的噪音点数目,一般是上千级别的
    :return: img_noise
    '''
    #
    # 参数image:,noise_num:
    img = cv2.imread(image)
    img_noise = img
    # cv2.imshow("src", img)
    rows, cols, chn = img_noise.shape
    # 加噪声
    for i in range(noise_num):
        x = np.random.randint(0, rows)#随机生成指定范围的整数
        y = np.random.randint(0, cols)
        img_noise[x, y, :] = 255
    return img_noise
img_noise = random_noise("colorful_lena.jpg",3000)
cv2.imshow('random_noise',img_noise)
cv2.waitKey(0)

以上就是Python实现对图像添加高斯噪声或椒盐噪声的详细内容,更多关于Python的资料请关注脚本之家其它相关文章!

相关文章

  • python基于win32api实现键盘输入

    python基于win32api实现键盘输入

    这篇文章主要介绍了python基于win32api实现键盘输入,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-12-12
  • Python中Tkinter组件Listbox的具体使用

    Python中Tkinter组件Listbox的具体使用

    本文主要介绍了Python中Tkinter组件Listbox的具体使用,Listbox组件用于显示一个选择列表,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-01-01
  • python中pandas库的iloc函数用法解析

    python中pandas库的iloc函数用法解析

    在 Pandas 中,.iloc 是一种用于基于整数位置进行索引的属性,可以用于获取 DataFrame 或 Series 中的数据,这篇文章主要介绍了python中pandas库的iloc函数用法,需要的朋友可以参考下
    2023-05-05
  • 解决Pycharm 运行后没有输出的问题

    解决Pycharm 运行后没有输出的问题

    这篇文章主要介绍了解决Pycharm 运行后没有输出的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-02-02
  • Pyecharts地图显示不完成问题解决方案

    Pyecharts地图显示不完成问题解决方案

    这篇文章主要介绍了Pyecharts地图显示不完成问题解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • Python图像处理之识别图像中的文字(实例讲解)

    Python图像处理之识别图像中的文字(实例讲解)

    今天小编就为大家分享一篇Python图像处理之识别图像中的文字(实例讲解),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • 基于Python编写一个中秋节嫦娥投食小游戏

    基于Python编写一个中秋节嫦娥投食小游戏

    今天给大家带来的是给玉兔投喂月饼的小游戏。八月十五中秋夜晚,让我们对着月亮许愿:希望我们在意和在意我们的人,诸邪避退、百事无忌、平安喜乐、万事胜意。提前祝大家中秋节快乐
    2022-09-09
  • python如何将自己的包上传到PyPi并可通过pip安装的方法步骤

    python如何将自己的包上传到PyPi并可通过pip安装的方法步骤

    本文主要介绍了python如何将自己的包上传到PyPi并可通过pip安装的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • Python中进度条tqdm包使用方法及特性介绍

    Python中进度条tqdm包使用方法及特性介绍

    这篇文章主要介绍了Python中进度条tqdm包使用方法及特性,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • wxpython中Textctrl回车事件无效的解决方法

    wxpython中Textctrl回车事件无效的解决方法

    这篇文章主要介绍了wxpython中Textctrl回车事件无效的解决方法,较为详细的分析了TextCtrl支持的事件类型,并给出了TextCtrl绑定回车事件的相应实现技巧,需要的朋友可以参考下
    2016-07-07

最新评论