java图论普利姆及克鲁斯卡算法解决最小生成树问题详解

 更新时间:2021年11月24日 11:33:17   作者:威斯布鲁克.猩猩  
这篇文章主要为大家介绍了java图论普利姆算法及克鲁斯卡算法解决最小生成树问题的示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助

什么是最小生成树?

最小生成树(Minimum Cost Spanning Tree),简称MST.

最小生成树要求图是连通图。连通图指图中任意两个顶点都有路径相通,通常指无向图。理论上如果图是有向、多重边的,也能求最小生成树,只是不太常见。

普利姆算法 

算法介绍

应用 --> 修路问题 

图解分析 

假设从A村开始

1.从<A>顶点开始处理==============>> <A,G>

A - C[7]   A - G[2]  A - B[5]

2.<A,G>开始,将A和G顶点和他们相邻的还没有访问的顶点进行处理=> <A,G,B,E>

A - C[7]   G - E[4]  G - F[6]  B - D[9]

3.<A,G,B>开始,将A,G,B顶点和他们相邻的还没有访问的顶点进行处理 => <A,G,B,E>

A - C[7]  G - E[4]  G - F[6]   B - D[9]

...........

4.<A,G,B,E> -> F//第4次大循环,对应边<E,F> 权值:5

5.<A,G,B,E,F> -> D//第5次大循环,对应边<F,D>权值:4

6.<A,G,B,E,F,D> -> C//第6次大循环,对应边<A,C>权值:7

public class PrimAlgorithm {
	public static void main(String[] args) {
		// 测试图是否创建成功
		char[] data = new char[] { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		int verxs = data.length;
		// 邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不连通
		int[][] weight = new int[][] { { 10000, 5, 7, 10000, 10000, 10000, 2 }, { 5, 10000, 10000, 9, 10000, 10000, 3 },
				{ 7, 10000, 10000, 10000, 8, 10000, 10000 }, { 10000, 9, 10000, 10000, 10000, 4, 10000 },
				{ 10000, 10000, 8, 10000, 10000, 5, 4 }, { 10000, 10000, 10000, 4, 5, 10000, 6 },
				{ 2, 3, 10000, 10000, 4, 6, 10000 }, };
		// 创建MGraph对象
		MGraph graph = new MGraph(verxs);
		// 创建一个MinTree对象
		MinTree minTree = new MinTree();
		minTree.createGraph(graph, verxs, data, weight);
		// 输出
		minTree.showGraph(graph);
		// 测试普利姆算法
		minTree.prim(graph, 0);
	}
} 
//创建最小生成树 -> 村庄的图
class MinTree {
	/**
	 * 创建图的邻接矩阵
	 * 
	 * @param graph  图对象
	 * @param verxs  图对应的顶点个数
	 * @param data   图的各个顶点的值
	 * @param weight 图的邻接矩阵
	 */
	public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
		int i, j;
		for (i = 0; i < verxs; i++) {
			graph.data[i] = data[i];
			for (j = 0; j < verxs; j++) {
				graph.weight[i][j] = weight[i][j];
			}
		}
	}
	/**
	 * 显示图的邻接矩阵
	 */
	public void showGraph(MGraph graph) {
		for (int[] link : graph.weight) {
			System.out.println(Arrays.toString(link));
		}
	}
 	/**
	 * 编写prim算法,得到最小生成树
	 * 
	 * @param graph 图
	 * @param v     表示从图的第几个顶点开始生成'A' -> 0 'B' -> 1...
	 */
	public void prim(MGraph graph, int v) {
		// visited[] 标记节点(顶点)是否被访问过
		int visited[] = new int[graph.verxs];
		// visited[] 默认元素的值都是0,表示没有访问过
		for (int i = 0; i < graph.verxs; i++) {
			visited[i] = 0;
		}
		// 把当前这个节点标记为已访问
		visited[v] = 1;
		// h1 和 h2 记录两个顶点的下标
		int h1 = -1;
		int h2 = -1;
		int minWeight = 10000;// 将minWeight初始成一个大数,后面在遍历过程中,会被替换
		for (int k = 1; k < graph.verxs; k++) {// 因为有graph,verxs顶点,普利姆算法结束后,有graph.verxs -1边
			// 这个是确定每一次生成的子图,那个节点和这次遍历的节点距离最近
			for (int i = 0; i < graph.verxs; i++) {// i节点表示被访问过的节点
				for (int j = 0; j < graph.verxs; j++) {// j节点表示还没有访问过的节点
					if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
						// 替换minWeight(寻找已经访问过的节点和未访问过的节点间的权值最小的边)
						minWeight = graph.weight[i][j];
						h1 = i;
						h2 = j;
					}
				}
			}
			// 找到一条边最小
			System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + ">权值:" + minWeight);
			// 将当前这个节点标记未已经访问
			visited[h2] = 1;
			// minWeight 重新设置为最大值10000
			minWeight = 10000;
		}
	}
} 
class MGraph {
	int verxs; // 表示图的节点个数
	char[] data; // 存放节点数据
	int[][] weight; // 存放边,就是邻接矩阵
 
	public MGraph(int verxs) {
		this.verxs = verxs;
		data = new char[verxs];
		weight = new int[verxs][verxs];
	}
}

克鲁斯卡尔算法

算法介绍

应用场景 -- 公交站问题 

算法图解 

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

 

算法分析 

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:

问题一:对图的所有边按照权值大小进行排序。

问题二:将边添加到最小生成树中时,咋样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生成树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

如何判断是否构成回路

举例说明(如图)

代码实现 

public class KruskalCase {
	private int edgeNum;// 边的个数
	private char[] vertexs;// 顶点数组
	private int[][] matrix;// 邻接矩阵
	// 使用INF 表示两个顶点不能连通
	private static final int INF = Integer.MAX_VALUE;
	public static void main(String[] args) {
		char[] vertexs = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		// 克鲁斯卡尔算法的邻接矩阵
		int matrix[][] = {
				/* A *//* B *//* C *//* D *//* E *//* F *//* G */
				/* A */{ 0, 12, INF, INF, INF, 16, 14 }, /* B */{ 12, 0, 0, INF, INF, 7, INF },
				/* C */{ INF, 10, 0, 3, 5, 6, INF }, /* D */{ INF, INF, 3, 0, 4, INF, INF },
				/* E */{ INF, INF, 5, 4, 0, 2, 8 }, /* F */{ 16, 7, 6, INF, 2, 0, 9 },
				/* G */{ 14, INF, INF, INF, 8, 9, 0 } };
		// 创建KruskalCase 对象实例
		KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
		// 输出构建的
		kruskalCase.print();
		kruskalCase.kruskal();
	} 
	// 构造器
	public KruskalCase(char[] vertexs, int[][] matrix) {
		// 初始化顶点数和边的个数
		int vlen = vertexs.length;
 
		// 初始化顶点,使用的是复制拷贝的方式
		this.vertexs = new char[vlen];
		for (int i = 0; i < vertexs.length; i++) {
			this.vertexs[i] = vertexs[i];
		} 
		// 初始化边,使用的是复制拷贝的方式
		this.matrix = new int[vlen][vlen];
		for (int i = 0; i < vlen; i++) {
			for (int j = 0; j < vlen; j++) {
				this.matrix[i][j] = matrix[i][j];
			}
		}
		// 统计边的条数
		for (int i = 0; i < vlen; i++) {
			for (int j = i + 1; i < vlen; j++) {
				if (this.matrix[i][j] != INF) {
					edgeNum++;
				}
			}
		}
	}
 	public void kruskal() {
		int index = 0;// 表示最后结果数组的索引
		int[] ends = new int[edgeNum];// 用于保存"已有最小生成树"中的每个顶点在最小生成树中的终点
		// 创建结果数组,保存最后的最小生成树
		EData[] rets = new EData[edgeNum]; 
		// 获取图中所有的边的集合,一共有12条边
		EData[] edges = getEdges();
		System.out.println("图的边的集合=" + Arrays.toString(edges) + "共" + edges.length);		
		//按照边的权值大小进行排序(从小到大)
		sortEdges(edges);		
		//遍历edges数组,将边添加到最小生成树中时,判断准备加入的边是否形成了回路,如果没有,就加入rets,否则不能加入
		for(int i = 0;i < edgeNum;i++) {
			//获取到第i条边的第一个顶点(起点)
			int p1 = getPosition(edges[i].start);
			//获取到第i条边的第2个顶点
			int p2 = getPosition(edges[i].end);
			//获取p1这个顶点在已有最小生成树中的终点
			int m = getEnd(ends, p1);
			//获取p2这个顶点在已有最小生成树中的终点
			int n = getEnd(ends, p2);
			//是否构成回路
			if(m != n) {//没有构成回路
				ends[m] = n;//设置m在"已有最小生成树"中的终点<E,F> [0,0,0,0,5,0,0,0,0,0,0]
				rets[index++] = edges[i];//有一条边加入到rets数组
			}
		}
		//统计并打印"最小生成树",输出rets
		System.out.println("最小生成树为");
		for(int i = 0;i < index;i++) {
			System.out.println(rets[i]);
		}
	} 
	// 打印邻接矩阵
	public void print() {
		System.out.println("邻接矩阵为:\n");
		for (int i = 0; i < vertexs.length; i++) {
			for (int j = 0; j < vertexs.length; j++) {
				System.out.printf("%20d\t", matrix[i][j]);
			}
			System.out.println();
		}
	}
 	/**
	 * 功能:对边进行排序处理,冒泡排序
	 * 
	 * @param edges 边的集合
	 */
	private void sortEdges(EData[] edges) {
		for (int i = 0; i < edges.length - 1; i++) {
			for (int j = 0; j < edges.length - 1 - i; j++) {
				if (edges[j].weight > edges[j + 1].weight) {// 交换
					EData tmp = edges[j];
					edges[j] = edges[j + 1];
					edges[j + 1] = tmp;
				}
			}
		}
	} 
	/**
	 * @param ch 顶点的值,比如'A','B'
	 * @return 返回ch顶点对应的下标,如果找不到,返回-1
	 */
	private int getPosition(char ch) {
		for (int i = 0; i < vertexs.length; i++) {
			if (vertexs[i] == ch) {// 找到
				return i;
			}
		}
		// 找不到,返回-1
		return -1;
	} 
	/**
	 * 功能:获取图中边,放到EData[]数组中,后面我们需要遍历该数组 是通过matrix邻接矩阵来获取 EData[]
	 * 形式[['A','B',12],['B','F',7],...]
	 * 
	 * @return
	 */
	private EData[] getEdges() {
		int index = 0;
		EData[] edges = new EData[edgeNum];
		for (int i = 0; i < vertexs.length; i++) {
			for (int j = i + 1; j < vertexs.length; j++) {
				if (matrix[i][j] != INF) {
					edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
				}
			}
		}
		return edges;
	}
	/**
	 * 功能:获取下标为i的顶点的棕垫终点(),用于后面判断两个顶点的终点是否相同
	 * 
	 * @param ends 数组就是记录了各个顶点对应的终点是那个,ends数组是在遍历过程中,逐步形成
	 * @param i    表示传入的顶点对应的下标
	 * @return 返回的就是下标为i的这个顶点对应的终点的下标
	 */
	private int getEnd(int[] ends, int i) {
		while (ends[i] != 0) {
			i = ends[i];
		}
		return i;
	}
}
//创建一个类EData,它的对象实例就表示一条边
class EData {
	char start;// 边的一个点
	char end;// 边的另外一个点
	int weight;// 边的权值
	// 构造器 
	public EData(char start, char end, int weight) {
		this.start = start;
		this.end = end;
		this.weight = weight;
	} 
	// 重写toString,便于输出边
	@Override
	public String toString() {
		return "EData [start=" + start + ", end=" + end + ", weight=" + weight + "]";
	}
 
}

以上就是java图论普利姆及克鲁斯卡算法解决最小生成树问题详解的详细内容,更多关于图论普利姆及克鲁斯卡算法解决最小生成树的资料请关注脚本之家其它相关文章!

相关文章

  • 详解Spring MVC 集成EHCache缓存

    详解Spring MVC 集成EHCache缓存

    本篇文章主要介绍了详解Spring MVC 集成EHCache缓存,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • spring boot使用@Async注解解决异步多线程入库的问题

    spring boot使用@Async注解解决异步多线程入库的问题

    最近在写项目是需要添加异步操作来提高效率,所以下面这篇文章主要给大家介绍了关于spring boot使用@Async注解解决异步多线程入库问题的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-05-05
  • Fastjson反序列化随机性失败示例详解

    Fastjson反序列化随机性失败示例详解

    这篇文章主要为大家介绍了Fastjson反序列化随机性失败示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-08-08
  • idea使用war以及war exploded的区别说明

    idea使用war以及war exploded的区别说明

    本文详细解析了war与warexploded两种部署方式的差异及步骤,war方式是先打包成war包,再部署到服务器上;warexploded方式是直接把文件夹、class文件等移到Tomcat上部署,支持热部署,开发时常用,文章分别列出了warexploded模式和war包形式的具体操作步骤
    2024-10-10
  • apllo开源分布式配置中心详解

    apllo开源分布式配置中心详解

    这篇文章主要为大家介绍了apllo开源分布式配置中心部署详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-02-02
  • Retrofit+RxJava实现带进度条的文件下载

    Retrofit+RxJava实现带进度条的文件下载

    这篇文章主要为大家详细介绍了Retrofit+RxJava实现带进度条的文件下载,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • SpringBoot整合Javamail实现邮件发送功能

    SpringBoot整合Javamail实现邮件发送功能

    邮件发送是一个很普遍的功能,springboot整合了相关的starter,本文给大家介绍了可以实现一个简单的邮件发送功能的实例,文中通过代码给大家介绍的非常详细,感兴趣的朋友可以参考下
    2023-12-12
  • 解决SpringAop内部调用时不经过代理类的问题

    解决SpringAop内部调用时不经过代理类的问题

    这篇文章主要介绍了解决SpringAop内部调用时不经过代理类的问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-01-01
  • Java对象转JSON时动态的增删改查属性详解

    Java对象转JSON时动态的增删改查属性详解

    这篇文章主要介绍了Java对象转JSON时如何动态的增删改查属性的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • Java实现贪吃蛇游戏源码

    Java实现贪吃蛇游戏源码

    这篇文章主要为大家详细介绍了Java实现贪吃蛇游戏源码,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-11-11

最新评论