Python+OpenCV 图像边缘检测四种实现方法

 更新时间:2021年11月26日 09:07:12   投稿:newname  
本文主要介绍了通过OpenCV中Sobel算子、Schaar算子、Laplacian算子以及Canny分别实现图像边缘检测并总结了四者的优缺点,感兴趣的同学可以参考一下
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
# 设置兼容中文
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
D:\Anaconda\AZWZ\lib\site-packages\numpy\_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs:
D:\Anaconda\AZWZ\lib\site-packages\numpy\.libs\libopenblas.NOIJJG62EMASZI6NYURL6JBKM4EVBGM7.gfortran-win_amd64.dll
D:\Anaconda\AZWZ\lib\site-packages\numpy\.libs\libopenblas.WCDJNK7YVMPZQ2ME2ZZHJJRJ3JIKNDB7.gfortran-win_amd64.dll
  warnings.warn("loaded more than 1 DLL from .libs:\n%s" %
horse = cv.imread('img/horse.jpg',0)
plt.imshow(horse,cmap=plt.cm.gray)
plt.imshow(horse,cmap=plt.cm.gray)

1.Sobel算子

# 1,0 代表沿x方向做sobel算子
x = cv.Sobel(horse,cv.CV_16S,1,0)
# 0,1 代表沿y方向做sobel算子
y = cv.Sobel(horse,cv.CV_16S,0,1)
# 格式转换
absx = cv.convertScaleAbs(x)
absy = cv.convertScaleAbs(y)
# 边缘检测结果
res = cv.addWeighted(absx,0.5,absy,0.5,0)
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(horse,cmap=plt.cm.gray)
plt.title("原图")
plt.subplot(1,2,2)
m2 = plt.imshow(res,cmap=plt.cm.gray)
plt.title("Sobel算子边缘检测")
Text(0.5, 1.0, 'Sobel算子边缘检测')

2.Schaar算子(更能体现细节)

# 1,0 代表沿x方向做sobel算子
x = cv.Sobel(horse,cv.CV_16S,1,0,ksize=-1)
# 0,1 代表沿y方向做sobel算子
y = cv.Sobel(horse,cv.CV_16S,0,1,ksize=-1)
# 格式转换
absx = cv.convertScaleAbs(x)
absy = cv.convertScaleAbs(y)
# 边缘检测结果
res = cv.addWeighted(absx,0.5,absy,0.5,0)
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(horse,cmap=plt.cm.gray)
plt.title("原图")
plt.subplot(1,2,2)
m2 = plt.imshow(res,cmap=plt.cm.gray)
plt.title("Schaar算子边缘检测")
Text(0.5, 1.0, 'Schaar算子边缘检测')

3.Laplacian算子(基于零穿越的,二阶导数的0值点)

res = cv.Laplacian(horse,cv.CV_16S)
res = cv.convertScaleAbs(res)
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(horse,cmap=plt.cm.gray)
plt.title("原图")
plt.subplot(1,2,2)
m2 = plt.imshow(res,cmap=plt.cm.gray)
plt.title("Laplacian算子边缘检测")
Text(0.5, 1.0, 'Laplacian算子边缘检测')

4.Canny边缘检测(被认为是最优的边缘检测算法)

res = cv.Canny(horse,0,100)
# res = cv.convertScaleAbs(res) Canny边缘检测是一种二值检测,不需要转换格式这一个步骤
plt.figure(figsize=(20,20))
plt.subplot(1,2,1)
m1 = plt.imshow(horse,cmap=plt.cm.gray)
plt.title("原图")
plt.subplot(1,2,2)
m2 = plt.imshow(res,cmap=plt.cm.gray)
plt.title("Canny边缘检测")
Text(0.5, 1.0, 'Canny边缘检测')

总结

以上就是Python+OpenCV 图像边缘检测四种实现方法的详细内容,更多关于Python OpenCV图像边缘检测的资料请关注脚本之家其它相关文章!

相关文章

  • Python实现视频画质增强的示例代码

    Python实现视频画质增强的示例代码

    这篇文章主要为大家详细介绍了如何利用Python语言实现对视频进行画质增强功能,文中的示例代码讲解详细,感兴趣的小伙伴可以尝试一下
    2022-04-04
  • Python 16进制与中文相互转换的实现方法

    Python 16进制与中文相互转换的实现方法

    今天小编就为大家分享一篇Python 16进制与中文相互转换的实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • python基于pexpect库自动获取日志信息

    python基于pexpect库自动获取日志信息

    这篇文章主要介绍了python基于pexpect库自动获取日志信息的方法,帮助大家更好的利用python高效办公,感兴趣的朋友可以了解下
    2021-02-02
  • python 划分数据集为训练集和测试集的方法

    python 划分数据集为训练集和测试集的方法

    今天小编就为大家分享一篇python 划分数据集为训练集和测试集的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Python实现数值积分方式

    Python实现数值积分方式

    今天小编就为大家分享一篇Python实现数值积分方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • Python用selenium实现自动登录和下单的项目实战

    Python用selenium实现自动登录和下单的项目实战

    本文主要介绍了Python用selenium实现自动登录和下单的项目实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Pycharm连接远程mysql报错的实现

    Pycharm连接远程mysql报错的实现

    本文主要介绍了Pycharm连接远程mysql报错的实现,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-08-08
  • PyTorch搭建ANN实现时间序列风速预测

    PyTorch搭建ANN实现时间序列风速预测

    这篇文章主要为大家介绍了PyTorch搭建ANN实现时间序列风速预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • Python编程中的for循环语句学习教程

    Python编程中的for循环语句学习教程

    这篇文章主要介绍了Python编程中的for循环语句学习教程,是Python入门学习中的基础知识,需要的朋友可以参考下
    2015-10-10
  • matplotlib部件之套索Lasso的使用

    matplotlib部件之套索Lasso的使用

    这篇文章主要介绍了matplotlib部件之套索Lasso的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02

最新评论