Python+Opencv实战之人脸追踪详解

 更新时间:2021年11月26日 11:32:19   作者:盼小辉丶  
人脸处理是人工智能中的一个热门话题,人脸处理可以使用计算机视觉算法从人脸中自动提取大量信息。本文将展示OpenCV Python实现人脸追踪的示例代码,需要的可以参考一下

前言

人脸处理是人工智能中的一个热门话题,人脸处理可以使用计算机视觉算法从人脸中自动提取大量信息,例如身份、意图和情感;而目标跟踪试图估计目标在整个视频序列中的轨迹,其中只有目标的初始位置是已知的,将这两者进行结合将产生许多有趣的应用。由于外观变化、遮挡、快速运动、运动模糊和比例变化等多种因素,人脸追踪非常具有挑战性。

人脸追踪技术简介

基于判别相关滤波器 (discriminative correlation filter, DCF) 的视觉跟踪器具有优异的性能和较高的计算效率,可用于实时应用程序。DCF 跟踪器是一种非常流行的基于边界框跟踪的方法。

dlib 库中实现了基于 DCF 的跟踪器,可以很方便的将其用于对象跟踪。在本文中,我们将介绍如何使用此跟踪器进行人脸和用户选择对象的跟踪,这种方法也称为判别尺度空间跟踪器 (Discriminative Scale Space Tracker, DSST),追踪器仅需要输入原始视频和目标初始位置的边界框,然后跟踪器自动预测目标的轨迹。

使用基于 dlib DCF 的跟踪器进行人脸跟踪

在进行人脸追踪时,我们首先使用 dlib 人脸检测器进行初始化,然后使用基于 dlib DCF 的跟踪器 DSST 进行人脸跟踪。调用以下函数初始化相关跟踪器:

tracker = dlib.correlation_tracker()

这将使用默认值 (filter_size = 6, num_scale_levels = 5, scale_window_size = 23, regularizer_space = 0.001, nu_space = 0.025, regularizer_scale = 0.001, nu_scale = 0.025, scale_pyramid_alpha = 1.020) 初始化跟踪器。 filter_size num_scale_levels 的值越大,跟踪精度越高,但它需要算力也更大;filter_size 的推荐使用值为 5、6 和 7;num_scale_levels 的推荐使用值为 4、5 和 6。

使用 tracker.start_track() 可以开始跟踪。在开始追踪前,我们需要先执行人脸检测,并将检测到的人脸位置传递给这个方法:

if tracking_face is False:
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # 尝试检测人脸以初始化跟踪器
    rects = detector(gray, 0)
    # 检查是否检测到人脸
    if len(rects) > 0:
        # 开始追踪
        tracker.start_track(frame, rects[0])
        tracking_face = True

当检测到人脸后,人脸跟踪器将开始跟踪边界框内的内容。为了更新被跟踪对象的位置,需要调用 tracker.update() 方法:

tracker.update(frame)

tracker.update() 方法更新跟踪器并返回衡量跟踪器置信度的指标,此指标可用于使用人脸检测重新初始化跟踪器。

要获取被跟踪对象的位置,需要调用 tracker.get_position() 方法:

pos = tracker.get_position()

tracker.get_position() 方法返回被跟踪对象的位置。最后,绘制人脸的预测位置:

cv2.rectangle(frame, (int(pos.left()), int(pos.top())), (int(pos.right()), int(pos.bottom())), (0, 255, 0), 3)

下图中,显示了人脸跟踪算法的跟踪效果过程:

在上图中,可以看到算法当前正在跟踪检测到的人脸,同时还可以按数字 1 以重新初始化跟踪。

完整代码

完整代码如下所示,同时我们需要提供按下数字 1 时重新初始化跟踪器的选项。

import cv2
import dlib

def draw_text_info():
    # 绘制文本的位置
    menu_pos_1 = (10, 20)
    menu_pos_2 = (10, 40)
    # 绘制菜单信息
    cv2.putText(frame, "Use '1' to re-initialize tracking", menu_pos_1, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
    if tracking_face:
        cv2.putText(frame, "tracking the face", menu_pos_2, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
    else:
        cv2.putText(frame, "detecting a face to initialize tracking...", menu_pos_2, cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                    (0, 0, 255))

# 创建视频捕获对象
capture = cv2.VideoCapture(0)
# 加载人脸检测器
detector = dlib.get_frontal_face_detector()
# 初始化追踪器
tracker = dlib.correlation_tracker()
# 当前是否在追踪人脸
tracking_face = False

while True:
    # 捕获视频帧
    ret, frame = capture.read()
    # 绘制基本信息
    draw_text_info()
    
    if tracking_face is False:
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        # 尝试检测人脸以初始化跟踪器
        rects = detector(gray, 0)
        # 通过判断是否检测到人脸来决定是否启动追踪
        if len(rects) > 0:
            # Start tracking:
            tracker.start_track(frame, rects[0])
            tracking_face = True

    if tracking_face is True:
        # 更新跟踪器并打印测量跟踪器的置信度
        print(tracker.update(frame))
        # 获取被跟踪对象的位置
        pos = tracker.get_position()
        # 绘制被跟踪对象的位置
        cv2.rectangle(frame, (int(pos.left()), int(pos.top())), (int(pos.right()), int(pos.bottom())), (0, 255, 0), 3)
    # 捕获键盘事件
    key = 0xFF & cv2.waitKey(1)

    # 按 1 初始化追踪器
    if key == ord("1"):
        tracking_face = False
    # 按 q 退出
    if key == ord('q'):
        break
    # 显示结果
    cv2.imshow("Face tracking using dlib frontal face detector and correlation filters for tracking", frame)
# 释放所有资源
capture.release()
cv2.destroyAllWindows()

使用基于 dlib DCF 的跟踪器进行对象跟踪

除了人脸外,基于 dlib DCF 的跟踪器可以用于跟踪任意对象。接下来,我们使用鼠标选择要跟踪的对象,并监听键盘事件,如果按 1,将开始跟踪预定义边界框内的对象;如果按 2,预定义的边界框将被清空,跟踪算法将停止,并等待用户选择另一个边界框。

例如,我们对检测小姐姐并不感兴趣,而更喜欢猫,那么我们可以首先用鼠标绘制矩形框选择喵咪,然后按 1 开始追踪小猫咪,如果我们想要追踪其他物体,可以按 2 重新绘制矩形框并进行追踪。如下所示,我们可以看到算法跟踪对象并进行实时输出:

完整代码

完整代码如下所示:

import cv2
import dlib

def draw_text_info():
    # 绘制文本的位置
    menu_pos_1 = (10, 20)
    menu_pos_2 = (10, 40)
    menu_pos_3 = (10, 60)
    # 菜单项
    info_1 = "Use left click of the mouse to select the object to track"
    info_2 = "Use '1' to start tracking, '2' to reset tracking and 'q' to exit"

    # 绘制菜单信息
    cv2.putText(frame, "Use '1' to re-initialize tracking", menu_pos_1, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
    cv2.putText(frame, info_2, menu_pos_2, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
    if tracking_state:
        cv2.putText(frame, "tracking", menu_pos_3, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
    else:
        cv2.putText(frame, "not tracking", menu_pos_3, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))

# 用于保存要跟踪的对象坐标的结构
points = []

def mouse_event_handler(event, x, y, flags, param):
    # 对全局变量的引用
    global points
    # 添加要跟踪的对象的左上角坐标
    if event == cv2.EVENT_LBUTTONDOWN:
        points = [(x, y)]
    # 添加要跟踪的对象的右下角坐标:
    elif event == cv2.EVENT_LBUTTONUP:
        points.append((x, y))
# 创建视频捕获对象
capture = cv2.VideoCapture(0)

# 窗口名
window_name = "Object tracking using dlib correlation filter algorithm"
# 创建窗口
cv2.namedWindow(window_name)
# 绑定鼠标事件
cv2.setMouseCallback(window_name, mouse_event_handler)

# 初始化跟踪器
tracker = dlib.correlation_tracker()
tracking_state = False
while True:
    # 捕获视频帧
    ret, frame = capture.read()
    # 绘制菜单项
    draw_text_info()

    # 设置并绘制一个矩形,跟踪矩形框内的对象
    if len(points) == 2:
        cv2.rectangle(frame, points[0], points[1], (0, 0, 255), 3)
        dlib_rectangle = dlib.rectangle(points[0][0], points[0][1], points[1][0], points[1][1])

    if tracking_face is True:
        # 更新跟踪器并打印测量跟踪器的置信度
        print(tracker.update(frame))
        # 获取被跟踪对象的位置
        pos = tracker.get_position()
        # 绘制被跟踪对象的位置
        cv2.rectangle(frame, (int(pos.left()), int(pos.top())), (int(pos.right()), int(pos.bottom())), (0, 255, 0), 3)

    # 捕获键盘事件
    key = 0xFF & cv2.waitKey(1)

    # 按下 1 键,开始追踪
    if key == ord("1"):
        if len(points) == 2:
            # Start tracking:
            tracker.start_track(frame, dlib_rectangle)
            tracking_state = True
            points = []
    # 按下 2 键,停止跟踪
    if key == ord("2"):
        points = []
        tracking_state = False
    # 按下 q 键,返回
    if key == ord('q'):
        break

    # 展示结果图像
    cv2.imshow(window_name, frame)

# 释放资源
capture.release()
cv2.destroyAllWindows()

小结

dlib 库实现了基于 DCF 的跟踪器,非常适合用于进行人脸追踪,使用 dlib.correlation_tracker() 函数初始化跟踪器,tracker.start_track() 函数用于开始追踪对象,tracker.update() 函数更新追踪器并且返回追踪器置信度,若要获取被跟踪对象的位置需要使用 tracker.get_position() 函数。

 以上就是Python+Opencv实战之人脸追踪详解的详细内容,更多关于Python Opencv 人脸追踪的资料请关注脚本之家其它相关文章!

相关文章

  • Python webargs 模块的简单使用

    Python webargs 模块的简单使用

    webargs是一个用于解析和验证HTTP请求对象的Python库,今天通过本文给大家介绍Python webargs 模块的安装使用,感兴趣的朋友一起看看吧
    2022-01-01
  • Python多行输入程序实例代码及扩展

    Python多行输入程序实例代码及扩展

    我们都知道Python内置方法input只能输入一行内容,我们今天来实现输入多行文本功能,这篇文章主要给大家介绍了关于Python多行输入程序的相关资料,需要的朋友可以参考下
    2022-04-04
  • python list排序的两种方法及实例讲解

    python list排序的两种方法及实例讲解

    本文主要介绍了python list排序的两种方法及实例讲解。具有很好的参考价值,下面跟着小编一起来看下吧
    2017-03-03
  • python实现apahce网站日志分析示例

    python实现apahce网站日志分析示例

    这篇文章主要介绍了python实现apahce网站日志分析示例,需要的朋友可以参考下
    2014-04-04
  • Python 性能优化技巧总结

    Python 性能优化技巧总结

    代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构、优化、扩展以及文档相关的事情通常需要消耗 80% 的工作量。优化通常包含两方面的内容:减小代码的体积,提高代码的运行效率。
    2016-11-11
  • Django项目如何获得SSL证书与配置HTTPS

    Django项目如何获得SSL证书与配置HTTPS

    本文总结了如何获得SSL证书并给Django项目配置HTTPS,建议先收藏再阅读,将来有一天你很可能会用到它。
    2021-04-04
  • 对pandas读取中文unicode的csv和添加行标题的方法详解

    对pandas读取中文unicode的csv和添加行标题的方法详解

    今天小编就为大家分享一篇对pandas读取中文unicode的csv和添加行标题的方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Pytorch搭建YoloV5目标检测平台实现过程

    Pytorch搭建YoloV5目标检测平台实现过程

    这篇文章主要为大家介绍了Pytorch搭建YoloV5目标检测平台实现过程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-04-04
  • Python办公自动化之CSV文件的运用和管理

    Python办公自动化之CSV文件的运用和管理

    Python办公⾃动化是利⽤Python编程语⾔来创建脚本和程序,以简化、加速和⾃动化⽇常办公任务和⼯作流程的过程,本文主要来介绍一下如何利用Python进行CSV文件的运用和管理,感兴趣的可以了解下
    2023-12-12
  • python筛选出两个文件中重复行的方法

    python筛选出两个文件中重复行的方法

    这篇文章主要为大家详细介绍了python筛选出两个文件中重复行的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-05-05

最新评论