Python实战之实现截图识别文字

 更新时间:2021年11月29日 09:39:05   作者:佟大帅  
本文主要介绍了通过python实现截图识别图中文字的功能,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以学习一下

前言

系统:win10

Python版本:python3.8.6

pycharm版本:pycharm 2021.1.2(Professional Edition)

完整代码下载:Baidu_Ocr.py-Python

一、获取百度智能云token

百度智能云 登录后找到人工智能界面下的文字识别->管理界面创建应用文字识别。

创建应用完成后记录下,后台界面提供的AppID、API key、Secret Key的信息

接下来根据 官方提供的文档获取使用Token

# encoding:utf-8
import requests
# client_id 为官网获取的AK, client_secret 为官网获取的SK
host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=wgEHks0l6MCpalbs3lPuFX1U&client_secret=Z4Rn4ghBx9k06fUYPmSEIRbCFvWFxLyQ'
response = requests.get(host)
if response:
    print(response.json()['access_token'])

二、百度借口调用

使用获取后token调用百度接口对图片进行识别提取文字

# encoding:utf-8

import requests
import base64
'''
通用文字识别(高精度版)
'''
request_url = "https://aip.baidubce.com/rest/2.0/ocr/v1/accurate_basic"
# 二进制方式打开图片文件
f = open('图片.png', 'rb')
img = base64.b64encode(f.read())
params = {"image":img}
# 获取后的Token的调用
access_token = '24.0d99efe8a0454ffd8d620b632c58cccc.2592000.1639986425.282335-24065278'
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
if response:
    print (response.json())

获取后的token为json格式的数据

此处步骤我们可以看出识别后的文件是以json的格式返回的所以要想达到取出文字的效果就需要对json格式的返回值进行解析

三、搭建窗口化的程序以便于使用

实现窗口可视化的第三方类库是Tkinter。可在终端输入 pip install tkinter 自行下载安装

导入tkinter模块包 构建我们的可视化窗口,要是实现的功能有截图识别文字,中英文分离,文字识别后自动发送给剪切板

from tkinter import *
# 创建窗口
window = Tk()
# 窗口名称
window.title('qcc-tnw')
# 设置窗口大小
window.geometry('400x600')
# 窗口标题设置
l=Label(window,text='百度API调用', bg='green', fg='white', font=('Arial', 12), width=30, height=2)
l.pack()
# 设置文本接收框
E1 = Text(window,width='100',height='100')
# 设置操作Button,单击运行文字识别  "window窗口,text表示按钮文本,font表示按钮本文字体,width表示按钮宽度,height表示按钮高度,command表示运行的函数"
img_txt = Button(window, text='文字识别', font=('Arial', 10), width=15, height=1)
# 设置操作Button,单击分割英文
cut_en = Button(window, text='英文分割', font=('Arial', 10), width=15, height=1)
# 设置操作Button,单击分割中文
cut_cn = Button(window, text='中文分割', font=('Arial', 10), width=15, height=1)
# 参数anchor='nw'表示在窗口的北偏西方向即左上角
img_txt.pack(anchor='nw')
cut_en.pack(anchor='nw')
cut_cn.pack(anchor='nw')
# 使得构建的窗口始终显示在桌面最上层
window.wm_attributes('-topmost',1)
window.mainloop()

四、实现截图的自动保存

通过上述对百度接口的解析发现接口是不支持提取剪切板中的文件的

所以通过PIL库截取的图片从剪切板保存到本地,在调用百度的接口实现图片中文字的识别

PIL的安装 终端输入 pip install PIL

from PIL import ImageGrab

#取出剪切板的文件保存至本地

image = ImageGrab.grabclipboard()
s= 'xxx.png'
image.save(s)
#百度接口调用
request_url = "https://aip.baidubce.com/rest/2.0/ocr/v1/accurate_basic"
f = open(s, 'rb')
img = base64.b64encode(f.read())
params = {"image": img}
access_token = '24.ee0e97cbc00530d449464a563e628b8d.2592000.1640228774.282335-24065278'
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
for i in response.json()['words_result']:
    print(i['words'])

完成后可以使用qq或微信等的截图功能截图并运行程序

五、将识别到的文字输出显示在窗口文本框中并将文字发送到剪切板

if response:
    for i in response.json()['words_result']:
        # 接受识别后的文本
        E1.insert("insert", i['words'] + '\n')
        E1.pack(side=LEFT)
    # 将识别后的文字写入剪切板
    pyperclip.copy(E1.get("1.0","end"))

六、提取识别后文字中的中(英)文

此处的判断相对简单将 if len(''.join(re.findall(r'[A-Za-z]', i['words'])))<1: 中的‘<'改为‘>'即为中文

E1.delete('1.0','end')
for i in response.json()['words_result']:
#判断是否存在英文
    if len(''.join(re.findall(r'[A-Za-z]', i['words'])))<1:
        #将识别正则过滤后的文本在文本框中显示
        E1.insert("insert", i['words'] + '\n')
        E1.pack(side=LEFT)
    #复制到剪切板
    pyperclip.copy(E1.get("1.0", "end"))

最后将方法封装为函数形式传递至我们定义好的窗口按钮中 

# 设置操作Button,单击运行文字识别  "window窗口,text表示按钮文本,font表示按钮本文字体,width表示按钮宽度,height表示按钮高度,command表示运行的函数"
img_txt = Button(window, text='文字识别', font=('Arial', 10), width=15, height=1,command=img_all)
# 设置操作Button,单击分割英文
cut_en = Button(window, text='英文分割', font=('Arial', 10), width=15, height=1,command=img_en)
# 设置操作Button,单击分割中文
cut_cn = Button(window, text='中文分割', font=('Arial', 10), width=15, height=1,command=img_cn)
# 参数anchor='nw'表示在窗口的北偏西方向即左上角
img_txt.pack(anchor='nw')
cut_en.pack(anchor='nw')
cut_cn.pack(anchor='nw')
window.wm_attributes('-topmost',1)

以上就是Python实战之实现截图识别文字的详细内容,更多关于Python 截图识别文字的资料请关注脚本之家其它相关文章!

相关文章

  • 对pandas中to_dict的用法详解

    对pandas中to_dict的用法详解

    今天小编就为大家分享一篇对pandas中to_dict的用法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • 浅谈Python基础—判断和循环

    浅谈Python基础—判断和循环

    这篇文章主要介绍了Python基础—判断和循环,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-03-03
  • CentOS安装pillow报错的解决方法

    CentOS安装pillow报错的解决方法

    本文给大家分享的是作者在centos下为Python安装pillow的时候报错的解决方法,希望对大家能够有所帮助。
    2016-01-01
  • python opencv实现直线检测并测出倾斜角度(附源码+注释)

    python opencv实现直线检测并测出倾斜角度(附源码+注释)

    这篇文章主要介绍了python opencv实现直线检测并测出倾斜角度(附源码+注释),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • 基于pytorch实现运动鞋品牌识别功能

    基于pytorch实现运动鞋品牌识别功能

    这篇文章主要给大家介绍了关于如何基于pytorch实现运动鞋品牌识别功能,文中通过图文以及实例代码介绍的非常详细,对大家学习或者使用PyTorch具有一定的参考学习价值,需要的朋友可以参考下
    2024-02-02
  • Python利用机器学习算法实现垃圾邮件的识别

    Python利用机器学习算法实现垃圾邮件的识别

    今天教大家利用简单的机器学习算法实现垃圾邮件识别,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • Python使用到第三方库PyMuPDF图片与pdf相互转换

    Python使用到第三方库PyMuPDF图片与pdf相互转换

    今天为大家介绍个比较简单的Python第三方库PyMuPDF进行图片和pdf之间的相互转换,以下就是利用PyMuPDF进行pdf与图片之间的互转
    2019-05-05
  • python中openpyxl和xlsxwriter对Excel的操作方法

    python中openpyxl和xlsxwriter对Excel的操作方法

    这篇文章主要介绍了python中openpyxl和xlsxwriter对Excel的操作方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • python求素数示例分享

    python求素数示例分享

    这篇文章主要介绍了python求素数示例,打印出素数列表,需要的朋友可以参考下
    2014-02-02
  • pandas.DataFrame中提取特定类型dtype的列

    pandas.DataFrame中提取特定类型dtype的列

    本文主要介绍了pandas.DataFrame中提取特定类型dtype的列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02

最新评论