Java C++解决在排序数组中查找数字出现次数问题

 更新时间:2021年12月07日 15:41:48   作者:林深时不见鹿  
本文终于介绍了分别通过Java和C++实现统计一个数字在排序数组中出现的次数。文中详细介绍了实现思路,感兴趣的小伙伴可以跟随小编学习一下

1、题目

统计一个数字在排序数组中出现的次数。

示例 1:

输入: nums = [5,7,7,8,8,10], target = 8

输出: 2

示例 2:

输入: nums = [5,7,7,8,8,10], target = 6

输出: 0

提示:

  • 0 <= nums.length <= 10^5
  • -10^9 <= nums[i] <= 10^9
  • nums 是一个非递减数组
  • -10^9 <= target <= 10^9

2、思路

统计一个数字在排序数组中出现的次数。

样例:

如样例所示,nums = [5,7,7,8,8,10],target = 8,8在数组中出现的次数为2,于是最后返回2。

数组有序,因此可以使用二分来做。两次二分,第一次二分查找第一个>= target的位置begin;第二次二分查找最后一个<= target的位置end,查找成功则返回end - begin + 1,即为数字在排序数组中出现的次数,否则返回0,表示该数没有在数组中出现。

二分模板:

模板1

当我们将区间[l, r]划分成[l, mid]和[mid + 1, r]时,其更新操作是r = mid或者l = mid + 1,计算mid时不需要加1,即mid = (l + r)/2。

C++/java代码模板:

int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = (l + r)/2;
        if (check(mid)) r = mid;
        else l = mid + 1;
    }
    return l;
}

模板2

当我们将区间[l, r]划分成[l, mid - 1]和[mid, r]时,其更新操作是r = mid - 1或者l = mid,此时为了防止死循环,计算mid时需要加1,即mid = ( l + r + 1 ) /2。

C++/java 代码模板:

int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = ( l + r + 1 ) /2;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

为什么两个二分模板的mid取值不同?

对于第二个模板,当我们更新区间时,如果左边界l更新为l = mid,此时mid的取值就应为mid = (l + r + 1)/ 2。因为当右边界r = l + 1时,此时mid = (l + l + 1)/2,相当于下取整,mid为l,左边界再次更新为l = mid = l,相当于没有变化。while循环就会陷入死循环。因此,我们总结出来一个小技巧,当左边界要更新为l = mid时,我们就令 mid =(l + r + 1)/2,相当于上取整,此时就不会因为r取特殊值r = l + 1而陷入死循环了。

而对于第一个模板,如果左边界l更新为l = mid + 1,是不会出现这样的困扰的。因此,大家可以熟记这两个二分模板,基本上可以解决99%以上的二分问题,再也不会被二分的边界取值所困扰了。

什么时候用模板1?什么时候用模板2?

假设初始时我们的二分区间为[l,r],每次二分缩小区间时,如果左边界l要更新为 l = mid,此时我们就要使用模板2,让 mid = (l + r + 1)/ 2,否则while会陷入死循环。如果左边界l更新为l = mid + 1,此时我们就使用模板1,让mid = (l + r)/2。因此,模板1和模板2本质上是根据代码来区分的,而不是应用场景。如果写完之后发现是l = mid,那么在计算mid时需要加上1,否则如果写完之后发现是l = mid + 1,那么在计算mid时不能加1。

为什么模板要取while( l < r),而不是while( l <= r)?

本质上取l < r 和 l <= r是没有任何区别的,只是习惯问题,如果取l <= r,只需要修改对应的更新区间即可。

while循环结束条件是l >= r,但为什么二分结束时我们优先取r而不是l?

二分的while循环的结束条件是l >= r,所以在循环结束时l有可能会大于r,此时就可能导致越界,二分问题我们优先取r。

二分查找的实现细节:

1、二分查找时,首先要确定我们要查找的边界值,保证每次二分缩小区间时,边界值始终包含在内。

2、注意看下面的每张图,最后的答案就是红色箭头指出的位置,也是我们二分的边界值。如果不清楚每次二分时,区间是如何更新的,可以画出和下面类似的图,每次更新区间时,要保证边值始终包含在内,这样关于左右边界的更新就会一目了然。

第一次查找target起始位置:

1、二分的范围,l = 0, r = nums.size() - 1,我们去二分查找>= target的最左边界begin。

2、当nums[mid] >= target时,往左半区域找,r = mid。

3、当nums[mid] < target时, 往右半区域找,l = mid + 1。

4、如果nums[r] != target,说明数组中不存在目标值 target,返回 0。否则我们就找到了第一个>=target的位置begin。

第二次查找target结束位置:

1、二分的范围,l = 0, r = nums.size() - 1,我们去二分查找<= target的最右边界end。

2、当nums[mid] <= target时,往右半区域找,l = mid。

3、当nums[mid] > target时, 往左半区域找,r = mid - 1。

4、找到了最后一个<= target的位置begin,返回end - begin + 1即可。

时间复杂度分析: 两次二分查找的时间复杂度为 O ( l o g n ) O(logn)O(logn)。

空间复杂度分析: 没有使用额外的数组,因此空间复杂度为O ( 1 ) O(1)O(1)。

3、c++代码

class Solution {
public:
    int search(vector<int>& nums, int target) {
        if(!nums.size()) return  0;
        int l = 0, r = nums.size() - 1;
        while(l < r)       //查找target的开始位置
        {
            int mid = (l + r) / 2;
            if(nums[mid] >= target) r = mid;
            else l = mid + 1;
        }
        if(nums[r] != target) return 0 ;  //查找失败
        int begin = r;     //记录开始位置
        l = 0, r = nums.size() - 1;
        while(l < r)       //查找tatget的结束位置
        {
            int mid = (l + r + 1) / 2;
            if(nums[mid] <= target) l = mid;
            else r = mid - 1;
        }
        int end = r;       //记录结束位置      
        return end - begin + 1;
    } 
};

4、java代码

class Solution {
    public int search(int[] nums, int target) {
        if(nums.length == 0) return  0;
        int l = 0, r = nums.length - 1;
        while(l < r)       //查找target的开始位置
        {
            int mid = (l + r) / 2;
            if(nums[mid] >= target) r = mid;
            else l = mid + 1;
        }
        if(nums[r] != target) return 0 ;  //查找失败
        int begin = r;     //记录开始位置
        l = 0; r = nums.length - 1;
        while(l < r)       //查找tatget的结束位置
        {
            int mid = (l + r + 1) / 2;
            if(nums[mid] <= target) l = mid;
            else r = mid - 1;
        }
        int end = r;       //记录结束位置      
        return end - begin + 1;  
    }
}

原题链接

到此这篇关于Java C++解决在排序数组中查找数字出现次数问题的文章就介绍到这了,更多相关Java C++ 在数组中查找数字出现次数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Java的string类为什么是不可变的

    Java的string类为什么是不可变的

    这篇文章主要介绍了Java的string类为什么是不可变的,总结了三个答案,需要的朋友可以参考下
    2014-04-04
  • SpringBoot中热部署配置深入讲解原理

    SpringBoot中热部署配置深入讲解原理

    在实际开发中,每次修改代码就需要重启项目,重新部署,对于一个后端开发者来说,重启确实很难受。在java开发领域,热部署一直是一个难以解决的问题,目前java虚拟机只能实现方法体的热部署,对于整个类的结构修改,仍然需要重启项目
    2023-01-01
  • Java 面向对象之继承篇详解原理与特点

    Java 面向对象之继承篇详解原理与特点

    继承是java面向对象编程技术的一块基石,因为它允许创建分等级层次的类。继承就是子类继承父类的特征和行为,使得子类对象(实例)具有父类的实例域和方法,或子类从父类继承方法,使得子类具有父类相同的行为
    2021-10-10
  • Java对接ansible自动运维化平台方式

    Java对接ansible自动运维化平台方式

    这篇文章主要介绍了Java对接ansible自动运维化平台方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-04-04
  • Java 代码本地设置Hadoop用户名密码的方法

    Java 代码本地设置Hadoop用户名密码的方法

    在Hadoop环境中,通常使用Kerberos进行身份验证,这篇文章主要介绍了Java 代码本地设置Hadoop用户名密码的方法,需要的朋友可以参考下
    2024-08-08
  • Java 数组迭代你会用吗

    Java 数组迭代你会用吗

    Java 数组是我们学习或工作中常用到的数据结构,我们会经常写数组迭代的代码,本文介绍三种数组迭代的方式,感兴趣的可以了解一下
    2021-09-09
  • Java8中Stream的一些神操作

    Java8中Stream的一些神操作

    Stream是Java8中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作,这篇文章主要给大家介绍了Java8中Stream的一些神操作,需要的朋友可以参考下
    2021-11-11
  • java面向对象编程类的内聚性分析

    java面向对象编程类的内聚性分析

    高内聚、低耦合是软件设计中非常关键的概念。在面向对象程序设计中类的划分时,类的内聚性越高,其封装性越好,越容易复用
    2021-10-10
  • SpringBoot3整合Druid的兼容性问题解决方案

    SpringBoot3整合Druid的兼容性问题解决方案

    Druid对于SpringBoot3的支持不够全面和友好;存在一些兼容性的问题,导致项目报错,所以本文小编给大家介绍了如何解决SpringBoot3整合Druid的兼容性问题,需要的朋友可以参考下
    2023-09-09
  • 如何将eclipse项目导入到idea的方法步骤(图文)

    如何将eclipse项目导入到idea的方法步骤(图文)

    这篇文章主要介绍了如何将eclipse项目导入到idea的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03

最新评论