Python爬虫爬取疫情数据并可视化展示

 更新时间:2021年12月10日 16:08:01   作者:松鼠爱吃饼干  
这篇文章主要介绍了Python利用爬虫爬取疫情数据并进行可视化的展示,文中的示例代码讲解清晰,对工作或学习有一定的价值,需要的朋友可以参考一下

知识点

  1. 爬虫基本流程
  2. json
  3. requests 爬虫当中 发送网络请求
  4. pandas 表格处理 / 保存数据
  5. pyecharts 可视化

开发环境

python 3.8 比较稳定版本 解释器发行版 anaconda jupyter notebook 里面写数据分析代码 专业性

pycharm 专业代码编辑器 按照年份与月份划分版本的

爬虫完整代码

导入模块

import requests      # 发送网络请求模块
import json
import pprint        # 格式化输出模块
import pandas as pd  # 数据分析当中一个非常重要的模块

分析网站

先找到今天要爬取的目标数据

https://news.qq.com/zt2020/page/feiyan.htm#/

找到数据所在url

发送请求

url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5&_=1638361138568'
response = requests.get(url, verify=False)

获取数据

json_data = response.json()['data']

解析数据

json_data = json.loads(json_data)
china_data = json_data['areaTree'][0]['children'] # 列表
data_set = []
for i in china_data:
    data_dict = {}
    # 地区名称
    data_dict['province'] = i['name']
    # 新增确认
    data_dict['nowConfirm'] = i['total']['nowConfirm']
    # 死亡人数
    data_dict['dead'] = i['total']['dead']
    # 治愈人数
    data_dict['heal'] = i['total']['heal']
    # 死亡率
    data_dict['deadRate'] = i['total']['deadRate']
    # 治愈率
    data_dict['healRate'] = i['total']['healRate']
    data_set.append(data_dict)

保存数据

df = pd.DataFrame(data_set)
df.to_csv('data.csv')

数据可视化

导入模块

from pyecharts import options as opts
from pyecharts.charts import Bar,Line,Pie,Map,Grid

读取数据

df2 = df.sort_values(by=['nowConfirm'],ascending=False)[:9]
df2

死亡率与治愈率

line = (
    Line()
    .add_xaxis(list(df['province'].values))
    .add_yaxis("治愈率", df['healRate'].values.tolist())
    .add_yaxis("死亡率", df['deadRate'].values.tolist())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="死亡率与治愈率"),

    )
)
line.render_notebook()

 

各地区确诊人数与死亡人数情况

bar = (
    Bar()
    .add_xaxis(list(df['province'].values)[:6])
    .add_yaxis("死亡", df['dead'].values.tolist()[:6])
    .add_yaxis("治愈", df['heal'].values.tolist()[:6])
    .set_global_opts(
        title_opts=opts.TitleOpts(title="各地区确诊人数与死亡人数情况"),
        datazoom_opts=[opts.DataZoomOpts()],
        )
)
bar.render_notebook()

以上就是Python爬虫爬取疫情数据并可视化展示的详细内容,更多关于Python爬取数据 可视化展示的资料请关注脚本之家其它相关文章!

相关文章

  • Ubuntu18.04安装 PyCharm并使用 Anaconda 管理的Python环境

    Ubuntu18.04安装 PyCharm并使用 Anaconda 管理的Python环境

    这篇文章主要介绍了Ubuntu18.04安装 PyCharm并使用 Anaconda 管理的Python环境的教程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04
  • pycharm如何使用anaconda中的各种包(操作步骤)

    pycharm如何使用anaconda中的各种包(操作步骤)

    这篇文章主要介绍了pycharm如何使用anaconda中的各种包,本文通过操作步骤给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-07-07
  • selenium WebDriverWait类等待机制的实现

    selenium WebDriverWait类等待机制的实现

    这篇文章主要介绍了selenium WebDriverWait类等待机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03
  • Python实现二叉堆

    Python实现二叉堆

    二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树)。二叉堆有两种:最大堆和最小堆。最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。
    2016-02-02
  • 在Django框架中运行Python应用全攻略

    在Django框架中运行Python应用全攻略

    这篇文章主要介绍了在Django框架中运行Python应用全攻略,在这之前必须搭建好简单的视图和模版,接下来便是本文中所述的核心内容应用配置,需要的朋友可以参考下
    2015-07-07
  • 快速了解python leveldb

    快速了解python leveldb

    这篇文章主要介绍了快速了解python leveldb,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • Python序列之list和tuple常用方法以及注意事项

    Python序列之list和tuple常用方法以及注意事项

    这篇文章主要介绍了Python序列之list和tuple常用方法以及注意事项,sequence(序列)是一组有顺序的对象的集合,序列可以包含一个或多个元素,也可以没有任何元素,序列有两种:list (表) 和 tuple(元组),需要的朋友可以参考下
    2015-01-01
  • python中如何使用正则表达式的非贪婪模式示例

    python中如何使用正则表达式的非贪婪模式示例

    贪婪与非贪婪模式影响的是被量词修饰的子表达式的匹配行为,下面这篇文章主要给大家介绍了关于python中如何使用正则表达式的非贪婪模式的相关资料,文中通过示例代码介绍的非常详细,对大家的学习具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
    2017-10-10
  • python selenium在打开的浏览器中动态调整User Agent

    python selenium在打开的浏览器中动态调整User Agent

    这篇文章主要介绍的是python selenium在打开的浏览器中动态调整User Agent,具体相关资料请需要的朋友参考下面文章详细内容,希望对你有所帮助
    2022-02-02
  • pygame外星人入侵小游戏超详细开发流程

    pygame外星人入侵小游戏超详细开发流程

    这篇文章主要介绍了利用Python编写的外星人入侵游戏的示例代码,文中的代码讲解详细,对我们学习Python有一定的帮助,感兴趣的可以学习一下
    2022-03-03

最新评论