Python 实现图像特效中的油画效果

 更新时间:2021年12月17日 11:25:21   作者:一马归一码  
这篇文章主要是为大家简单介绍一下图像添加油画特效的基本原理以及代码实现,文中的示例代码很详细,对我们学习或者工作有一点的价值,感兴趣的小伙伴可以了解一下

在前面的文章 Python 计算机视觉(十五)—— 图像特效处理 中我已经介绍了大部分的图像的特效处理,但还是忽略了油画特效的处理,在本篇文章中简单介绍一下油画特效的基本原理以及代码实现,感兴趣的小伙伴可以跟着码一遍代码,或者使用代码直接运行查看一下效果就行。

一 基本原理

如下面的两幅图所示,油画用对了地方会使得图像一下子显得文艺起来了呢!

拍出的图像

转化为油画

那么将一幅图像转化为油画类型的图案是怎么实现的呢?为了将一幅普通的图像转化为油画,一般需要以下的几个步骤:

(1)将图像转化为灰度图像

(2)将图像划分为一个个小方框(4*4,6*6...),并统计其中的每一个像素点像素值

(3)对方框中的像素点的的灰度值进行量化(可以参考我之前的关于量化的文章),并对不同的等级的像素点数目进行计数

(4)找到方框中灰度等级最多的像素点,并对这些像素点的灰度值求平均

(5)用平均值代替原像素像素值

二 代码实现

首先还是经典操作,读取图像信息:

"""
Author:XiaoMa
date:2021/12/10
"""
import cv2
import numpy as np
img = cv2.imread(r'E:\From Zhihu\For the desk\cvyouhua.jpg')
img = cv2.resize(img, dsize = None, fx = 0.2, fy = 0.2) #由于该算法计算量较大,首先对其大小进行调整
cv2.imshow('W0', img)
cv2.waitKey(0)
#获取图片宽高
height, width = img.shape[:2]
print(height, width)

得到图像信息如下:

对图像进行油画特效处理,代码已经添加了注释,有注释的不清楚的地方可以在评论区讨论或者私信留言,看到会回复大家的:

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#将图像转化为灰度图像
dst = np.zeros((height, width, 3), np.uint8)#创建一个和原图等大小的全零矩阵
#-----------------------------------------------------------------------
#使用for循环嵌套来遍历图像中的每一个像素点
#-----------------------------------------------------------------------
for i in range(2, height-2):
    for j in range(2, width-2):
        # ----------------------------------------------------------
        # 方框为4*4,对方框内像素点进行量化并记录不同等级的像素点的个数
        # ------------------------------------------------------------
        array1 = np.zeros(8, np.uint8)#将像素点的值量化为8份,定义数组记录不同等级像素点的个数
        for m in range(-2, 2):
            for n in range(-2, 2):
                p1 = int(gray[i+m, j+n]/32)#量化操作
                array1[p1] = array1[p1] + 1#该数组用来记录不同量化级别下的像素点,比如array1[0]代表等级一下的像素点的个数,即像素值为(0~64)的像素点的个数
        #-----------------------------------------------------------
        #在上面的数组中寻找最大值,即寻找数目最多的像素等级
        #------------------------------------------------------------
        currentMax = array1[0]
        l = 0#用来封装最大值在数组中的位置
        for k in range(0, 8):
            if currentMax < array1[k]:
                currentMax = array1[k]
                l = k
        #------------------------
        #求数目最多的像素等级的平均
        #------------------------
        for m in range(-2, 2):
            for n in range(-2, 2):
                if gray[i + m, j + n] >= (l * 32) and gray[i + m, j + n] <= ((l + 1) * 32):
                    (b, g, r) = img[i + m, j + n]
        dst[i, j] = (b, g, r)
cv2.imshow('youhua', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

得到的结果如下:

三 总体实现代码以及保存 

总体的代码以及保存方式如下,大家修改一下读取和保存的路径就可以用了,如果想了解一下实现算法可以先敲一遍代码:

"""
Author:XiaoMa
date:2021/12/15
"""
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread(r'E:\From Zhihu\For the desk\cvyouhua.jpg')
img = cv2.resize(img, dsize = None, fx = 0.2, fy = 0.2) #由于该算法计算量较大,首先对其大小进行调整
cv2.imshow('W0', img)
cv2.waitKey(0)
#获取图片宽高
height, width = img.shape[:2]
print(height, width)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#将图像转化为灰度图像
dst = np.zeros((height, width, 3), np.uint8)#创建一个和原图等大小的全零矩阵
#-----------------------------------------------------------------------
#使用for循环嵌套来遍历图像中的每一个像素点
#-----------------------------------------------------------------------
for i in range(2, height-2):
    for j in range(2, width-2):
        # ----------------------------------------------------------
        # 方框为4*4,对方框内像素点进行量化并记录不同等级的像素点的个数
        # ------------------------------------------------------------
        array1 = np.zeros(8, np.uint8)#将像素点的值量化为8份,定义数组记录不同等级像素点的个数
        for m in range(-2, 2):
            for n in range(-2, 2):
                p1 = int(gray[i+m, j+n]/32)#量化操作
                array1[p1] = array1[p1] + 1#该数组用来记录不同量化级别下的像素点,比如array1[0]代表等级一下的像素点的个数,即像素值为(0~64)的像素点的个数
        #-----------------------------------------------------------
        #在上面的数组中寻找最大值,即寻找数目最多的像素等级
        #------------------------------------------------------------
        currentMax = array1[0]
        l = 0#用来封装最大值在数组中的位置
        for k in range(0, 8):
            if currentMax < array1[k]:
                currentMax = array1[k]
                l = k
        #------------------------
        #求数目最多的像素等级的平均
        #------------------------
        for m in range(-2, 2):
            for n in range(-2, 2):
                if gray[i + m, j + n] >= (l * 32) and gray[i + m, j + n] <= ((l + 1) * 32):
                    (b, g, r) = img[i + m, j + n]
        dst[i, j] = (b, g, r)
cv2.imshow('youhua', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
#------------------------------------------------
#保存图像(以前的文章中介绍过,有不懂的地方可以去考古)
#------------------------------------------------
plt.rcParams['font.family'] = 'SimHei'       #将全局中文字体改为黑体
ImgGroup = [img, gray, dst]
ImgTitle = ['原图', '灰度图', '油画']
a = plt.figure(figsize=(30, 10)) #创建画布
for i in range(0, 3):
    ImgGroup[i] = cv2.cvtColor(ImgGroup[i], cv2.COLOR_BGR2RGB)
    plt.subplot(1, 3, i + 1)
    plt.imshow(ImgGroup[i])
    plt.title(ImgTitle[i])
    plt.suptitle('图像油画特效')
    plt.xticks([])
    plt.yticks([])
plt.savefig(r'E:\From Zhihu\For the desk\Acvyouhua.jpg')
plt.show()

得到结果如下:

到此这篇关于Python 实现图像特效中的油画效果的文章就介绍到这了,更多相关Python 图像油画效果内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python 提取文件的小程序

    python 提取文件的小程序

    在做网站项目时,开发经常要给工程一个升级包,包含本次修改的内容,这个升级包的内容就是tomcat的发布目录下的文件;
    2009-07-07
  • Python利用Pillow(PIL)库实现验证码图片的全过程

    Python利用Pillow(PIL)库实现验证码图片的全过程

    这篇文章主要给大家介绍了关于Python利用Pillow(PIL)库实现验证码图片的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • Python模块、包(Package)概念与用法分析

    Python模块、包(Package)概念与用法分析

    这篇文章主要介绍了Python模块、包(Package)概念与用法,结合实例形式分析了Python中模块、包(Package)概念、功能、相关使用技巧与注意事项,需要的朋友可以参考下
    2019-05-05
  • 快速进修Python指南之面向对象基础

    快速进修Python指南之面向对象基础

    这篇文章主要为大家介绍了Java开发者快速进修Python指南之面向对象基础,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • Selenium 三种等待方式(强制等待、隐式等待、显示等待)

    Selenium 三种等待方式(强制等待、隐式等待、显示等待)

    这篇文章主要介绍了Selenium 三种等待方式(强制等待、隐式等待、显示等待),文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • pytorch GPU和CPU模型相互加载方式

    pytorch GPU和CPU模型相互加载方式

    在PyTorch中,保存和加载模型有两种主要方式:直接保存整个模型结构加权重,或者只保存模型的参数,直接保存整个模型的方法简单,但不够灵活,且可能存在模型结构不一致的风险,推荐的做法是只保存模型参数,这种方法需要在加载前定义与原模型结构相同的模型
    2024-09-09
  • 在linux系统下安装python librtmp包的实现方法

    在linux系统下安装python librtmp包的实现方法

    今天小编就为大家分享一篇在linux系统下安装python librtmp包的实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • 2行Python代码实现给pdf文件添加水印

    2行Python代码实现给pdf文件添加水印

    你们在给PDF文件添加水印时,还在手动一页页添加吗?本文小编为大家带来了一个更方便的方法,即用Python的2行代码来实现,感兴趣的小伙伴可以学习一下
    2022-02-02
  • python如何去除图像中的框

    python如何去除图像中的框

    最近在做图像标注,会出现带框的图片,需要去除其中的边框,本文通过实例代码给大家介绍python如何去除图像中的框,感兴趣的朋友跟随小编一起看看吧
    2023-11-11
  • python 将html转换为pdf的几种方法

    python 将html转换为pdf的几种方法

    这篇文章主要介绍了python 将html转换为pdf的几种方法,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-12-12

最新评论