通过OpenCV实现对指定颜色的物体追踪
本文实现对特定颜色的物体追踪,我实验用的是绿萝的树叶。
新建脚本ball_tracking.py,加入代码:
import argparse from collections import deque import cv2 import numpy as np
导入必要的包,然后定义一些函数
def grab_contours(cnts): # 如果 cv2.findContours 返回的轮廓元组的长度为“2”,那么我们使用的是 OpenCV v2.4、v4-beta 或 v4-official if len(cnts) == 2: cnts = cnts[0] # 如果轮廓元组的长度为“3”,那么我们使用的是 OpenCV v3、v4-pre 或 v4-alpha elif len(cnts) == 3: cnts = cnts[1] else: raise Exception(("Contours tuple must have length 2 or 3, " "otherwise OpenCV changed their cv2.findContours return " "signature yet again. Refer to OpenCV's documentation " "in that case")) return cnts def resize(image, width=None, height=None, inter=cv2.INTER_AREA): dim = None (h, w) = image.shape[:2] # 如果高和宽为None则直接返回 if width is None and height is None: return image # 检查宽是否是None if width is None: # 计算高度的比例并并按照比例计算宽度 r = height / float(h) dim = (int(w * r), height) # 高为None else: # 计算宽度比例,并计算高度 r = width / float(w) dim = (width, int(h * r)) resized = cv2.resize(image, dim, interpolation=inter) # return the resized image return resized
grab_contours 对于opencv不同版本做了兼容处理。
resize等比例改变图片的大小。
命令行参数 ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", help="path to video") ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size") args = vars(ap.parse_args()) # 绿色树叶的HSV色域空间范围 greenLower = (29, 86, 6) greenUpper = (64, 255, 255) pts = deque(maxlen=args["buffer"]) vs = cv2.VideoCapture(0) fps = 30 #保存视频的FPS,可以适当调整 size=(600,450) fourcc=cv2.VideoWriter_fourcc(*'XVID') videowrite=cv2.VideoWriter('output.avi',fourcc,fps,size)
定义参数
–video :视频文件的路径或者摄像头的id
–buffer 是 deque 的最大大小,它维护我们正在跟踪的球的先前 (x, y) 坐标列表。 这个双端队列允许我们绘制球的“轨迹”,详细说明它过去的位置。 较小的队列将导致较短的尾部,而较大的队列将产生较长的尾部
定义hsv空间的上限和下限
启动摄像头0
最后是保存定义VideoWriter对象,实现对视频的写入功能
while True: ret_val, frame = vs.read() if ret_val is False: break frame = resize(frame, width=600) # 通过高斯滤波去除掉一些高频噪声,使得重要的数据更加突出 blurred = cv2.GaussianBlur(frame, (11, 11), 0) # 将图片转为HSV hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) # inRange的作用是根据阈值进行二值化:阈值内的像素设置为白色(255),阈值外的设置为黑色(0) mask = cv2.inRange(hsv, greenLower, greenUpper) # 腐蚀(erode)和膨胀(dilate)的作用: # 1. 消除噪声; # 2. 分割(isolate)独立的图像元素,以及连接(join)相邻的元素; # 3. 寻找图像中的明显的极大值区域或极小值区域 mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2)
开启一个循环,该循环将一直持续到 (1) 我们按下 q 键,表明我们要终止脚本或 (2) 我们的视频文件到达终点并用完帧。
读取一帧,返回两个参数,第一个参数是否成功,第二个参数是一帧图像。
如果失败则break。
对图像进行了一些预处理。首先,我们将框架的大小调整为 600 像素的宽度。缩小帧使我们能够更快地处理帧,从而提高 FPS(因为我们要处理的图像数据更少)。然后我们将模糊框架以减少高频噪声,并使我们能够专注于框架内的结构物体,例如球。最后,我们将帧转换为 HSV 颜色空间。
通过调用 cv2.inRange 处理帧中绿球的实际定位。首先为绿色提供下 HSV 颜色边界,然后是上 HSV 边界。 cv2.inRange 的输出是一个二进制掩码,
# 寻找轮廓,不同opencv的版本cv2.findContours返回格式有区别,所以调用了一下imutils.grab_contours做了一些兼容性处理 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = grab_contours(cnts) center = None # only proceed if at least one contour was found if len(cnts) > 0: # find the largest contour in the mask, then use it to compute the minimum enclosing circle # and centroid c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) # 对于01二值化的图像,m00即为轮廓的面积, 一下公式用于计算中心距 center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # only proceed if the radius meets a minimum size if radius > 10: # draw the circle and centroid on the frame, then update the list of tracked points cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2) cv2.circle(frame, center, 5, (0, 0, 255), -1) pts.appendleft(center) for i in range(1, len(pts)): # if either of the tracked points are None, ignore them if pts[i - 1] is None or pts[i] is None: continue # compute the thickness of the line and draw the connecting line thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5) cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness) cv2.imshow("Frame", frame) videowrite.write(frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): break videowrite.release() vs.release() cv2.destroyAllWindows()
计算图像中对象的轮廓。在接下来的行中,将球的中心 (x, y) 坐标初始化为 None。
检查以确保在掩码中至少找到一个轮廓。假设至少找到一个轮廓,找到 cnts 列表中最大的轮廓,计算 blob 的最小包围圆,然后计算中心 (x, y) 坐标(即“质心”)。
快速检查以确保最小包围圆的半径足够大。如果半径通过测试,我们然后画两个圆圈:一个围绕球本身,另一个表示球的质心。
然后,将质心附加到 pts 列表中。
循环遍历每个 pts。如果当前点或前一个点为 None(表示在该给定帧中没有成功检测到球),那么我们忽略当前索引继续循环遍历 pts。
如果两个点都有效,我们计算轨迹的厚度,然后将其绘制在框架上。
到此这篇关于通过OpenCV实现对指定颜色的物体追踪的文章就介绍到这了,更多相关OpenCV对指定颜色的物体追踪内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python报错TypeError: ‘dict‘ object is not&
在Python开发的旅程中,报错信息就像是一个个路障,阻碍着我们前进的步伐,而“TypeError: ‘dict’ object is not iterable”这个报错,常常让开发者们陷入困惑,那么,这个报错究竟是怎么产生的呢?又该如何有效地解决它呢?让我们一起深入探讨,找到解决问题的方法2024-10-10使用PyCharm配合部署Python的Django框架的配置纪实
这篇文章主要介绍了使用PyCharm配合部署Python的Django框架的配置纪实,PyCharm是一款强大的Python的IDE,需要的朋友可以参考下2015-11-11
最新评论