利用Python发送 10 万个 http 请求

 更新时间:2021年12月21日 10:45:03   作者:迟业  
这篇文章主要介绍了如何利用Python发送 10 万个 http 请求,下面我们讲利用Python写代码实现10 万个 url,对每个 url 发送 http 请求,并打印请求结果的状态码,需要的朋友可以参考一下

前言:

假如有一个文件,里面有 10 万个 url,需要对每个 url 发送 http 请求,并打印请求结果的状态码,如何编写代码尽可能快的完成这些任务呢?

Python 并发编程有很多方法,多线程的标准库 threadingconcurrency,协程 asyncio,当然还有 grequests 这种异步库,每一个都可以实现上述需求,下面一一用代码实现一下,本文的代码可以直接运行,给你以后的并发编程作为参考:

1.队列+多线程

定义一个大小为 400 的队列,然后开启 200 个线程,每个线程都是不断的从队列中获取 url 并访问。

主线程读取文件中的 url 放入队列中,然后等待队列中所有的元素都被接收和处理完毕。

代码如下:

from threading import Thread

import sys

from queue import Queue

import requests

concurrent = 200

def doWork():

while True:

url = q.get()

status, url = getStatus(url)

doSomethingWithResult(status, url)

q.task_done()

def getStatus(ourl):

try:

res = requests.get(ourl)

return res.status_code, ourl

except:

return "error", ourl

def doSomethingWithResult(status, url):

print(status, url)

q = Queue(concurrent * 2)

for i in range(concurrent):

t = Thread(target=doWork)

t.daemon = True

t.start()

try:

for url in open("urllist.txt"):

q.put(url.strip())

q.join()

except KeyboardInterrupt:

sys.exit(1)

运行结果如下:

有没有 get 到新技能?

2.线程池

如果使用线程池,推荐使用更高级的 concurrent.futures 库:

import concurrent.futures

import requests

out = []

CONNECTIONS = 100

TIMEOUT = 5

urls = []

with open("urllist.txt") as reader:

for url in reader:

urls.append(url.strip())

def load_url(url, timeout):

ans = requests.get(url, timeout=timeout)

return ans.status_code

with concurrent.futures.ThreadPoolExecutor(max_workers=CONNECTIONS) as executor:

future_to_url = (executor.submit(load_url, url, TIMEOUT) for url in urls)

for future in concurrent.futures.as_completed(future_to_url):

try:

data = future.result()

except Exception as exc:

data = str(type(exc))

finally:

out.append(data)

print(data)

3.协程 + aiohttp

协程也是并发非常常用的工具了,

import asyncio

from aiohttp import ClientSession, ClientConnectorError

async def fetch_html(url: str, session: ClientSession, **kwargs) -> tuple:

try:

resp = await session.request(method="GET", url=url, **kwargs)

except ClientConnectorError:

return (url, 404)

return (url, resp.status)

async def make_requests(urls: set, **kwargs) -> None:

async with ClientSession() as session:

tasks = []

for url in urls:

tasks.append(

fetch_html(url=url, session=session, **kwargs)

)

results = await asyncio.gather(*tasks)

for result in results:

print(f'{result[1]} - {str(result[0])}')

if __name__ == "__main__":

import sys

assert sys.version_info >= (3, 7), "Script requires Python 3.7+."

with open("urllist.txt") as infile:

urls = set(map(str.strip, infile))

asyncio.run(make_requests(urls=urls))

4.grequests[1]

这是个第三方库,目前有 3.8K 个星,就是 Requests + Gevent[2],让异步 http 请求变得更加简单。Gevent 的本质还是协程。

使用前:

pip install grequests

使用起来那是相当的简单:

import grequests

urls = []

with open("urllist.txt") as reader:

for url in reader:

urls.append(url.strip())

rs = (grequests.get(u) for u in urls)

for result in grequests.map(rs):

print(result.status_code, result.url)

注意 :grequests.map(rs) 是并发执行的。

运行结果如下:

也可以加入异常处理:

>>> def exception_handler(request, exception):

...    print("Request failed")

>>> reqs = [

...    grequests.get('http://httpbin.org/delay/1', timeout=0.001),

...    grequests.get('http://fakedomain/'),

...    grequests.get('http://httpbin.org/status/500')]

>>> grequests.map(reqs, exception_handler=exception_handler)

Request failed

Request failed

[None, None, <Response [500]>]

最后的话:

今天分享了并发 http 请求的几种实现方式,有人说异步(协程)性能比多线程好,其实要分场景看的,没有一种方法适用所有的场景,笔者就曾做过一个实验,也是请求 url,当并发数量超过 500 时,协程明显变慢。所以,不能说哪个一定比哪个好,需要划分情况。

到此这篇关于利用Python发送 10 万个 http 请求的文章就介绍到这了,更多相关利用Python发送 http 请求内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 一文带你了解CNN(卷积神经网络)

    一文带你了解CNN(卷积神经网络)

    CNN是神经网络中的一种,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。本文主要讲解了CNN(卷积神经网络)的基础内容,想了解更多的小伙伴可以看一看这篇文章
    2021-09-09
  • python 多维切片之冒号和三个点的用法介绍

    python 多维切片之冒号和三个点的用法介绍

    下面小编就为大家分享一篇python 多维切片之冒号和三个点的用法介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 如何将json数据转换为python数据

    如何将json数据转换为python数据

    这篇文章主要介绍了如何将json数据转换为python数据,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • Python实现简易的图书管理系统

    Python实现简易的图书管理系统

    这篇文章主要为大家详细介绍了Python实现简易的图书管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • Python在线和离线安装第三方库的方法

    Python在线和离线安装第三方库的方法

    这篇文章主要介绍了Python在线和离线安装第三方库的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-10-10
  • Django中使用ModelForm生成HTML标签的方法步骤

    Django中使用ModelForm生成HTML标签的方法步骤

    在 Django 中,使用 ModelForm 来生成 HTML 表单标签是一种常见且高效的做法,本文主要介绍了Django中使用ModelForm生成HTML标签的方法步骤,感兴趣的可以了解一下
    2024-01-01
  • TensorFlow实现模型断点训练,checkpoint模型载入方式

    TensorFlow实现模型断点训练,checkpoint模型载入方式

    这篇文章主要介绍了TensorFlow实现模型断点训练,checkpoint模型载入方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python爬虫之百度API调用方法

    python爬虫之百度API调用方法

    下面小编就为大家带来一篇python爬虫之百度API调用方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • Python读取TIF影像的多种方法

    Python读取TIF影像的多种方法

    Python提供了丰富的库来读取和处理TIFF文件,其中PIL库是最常用的,本文给大家介绍Python读取TIF影像的几种方法,需要的朋友可以参考下
    2023-07-07
  • tensorflow 保存模型和取出中间权重例子

    tensorflow 保存模型和取出中间权重例子

    今天小编就为大家分享一篇tensorflow 保存模型和取出中间权重例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01

最新评论