使用docker部署grafana+prometheus配置
更新时间:2021年12月22日 14:03:05 作者:runzhao
这篇文章主要介绍了docker部署grafana+prometheus配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
docker-compose-monitor.yml
version: '2' networks: monitor: driver: bridge services: influxdb: image: influxdb:latest container_name: tig-influxdb ports: - "18083:8083" - "18086:8086" - "18090:8090" env_file: - 'env.influxdb' volumes: # Data persistency # sudo mkdir -p ./influxdb/data - ./influxdb/data:/var/lib/influxdb # 配置docker里的时间为东八区时间 - ./timezone:/etc/timezone:ro - ./localtime:/etc/localtime:ro restart: unless-stopped #停止后自动 telegraf: image: telegraf:latest container_name: tig-telegraf links: - influxdb volumes: - ./telegraf.conf:/etc/telegraf/telegraf.conf:ro - ./timezone:/etc/timezone:ro - ./localtime:/etc/localtime:ro restart: unless-stopped prometheus: image: prom/prometheus container_name: prometheus hostname: prometheus restart: always volumes: - /home/qa/docker/grafana/prometheus.yml:/etc/prometheus/prometheus.yml - /home/qa/docker/grafana/node_down.yml:/etc/prometheus/node_down.yml ports: - '9090:9090' networks: - monitor alertmanager: image: prom/alertmanager container_name: alertmanager hostname: alertmanager restart: always volumes: - /home/qa/docker/grafana/alertmanager.yml:/etc/alertmanager/alertmanager.yml ports: - '9093:9093' networks: - monitor grafana: image: grafana/grafana:6.7.4 container_name: grafana hostname: grafana restart: always ports: - '13000:3000' networks: - monitor node-exporter: image: quay.io/prometheus/node-exporter container_name: node-exporter hostname: node-exporter restart: always ports: - '9100:9100' networks: - monitor cadvisor: image: google/cadvisor:latest container_name: cadvisor hostname: cadvisor restart: always volumes: - /:/rootfs:ro - /var/run:/var/run:rw - /sys:/sys:ro - /var/lib/docker/:/var/lib/docker:ro ports: - '18080:8080' networks: - monitor
alertmanager.yml
global: resolve_timeout: 5m smtp_from: '邮箱' smtp_smarthost: 'smtp.exmail.qq.com:25' smtp_auth_username: '邮箱' smtp_auth_password: '密码' smtp_require_tls: false smtp_hello: 'qq.com' route: group_by: ['alertname'] group_wait: 5s group_interval: 5s repeat_interval: 5m receiver: 'email' receivers: - name: 'email' email_configs: - to: '收件邮箱' send_resolved: true inhibit_rules: - source_match: severity: 'critical' target_match: severity: 'warning' equal: ['alertname', 'dev', 'instance']
prometheus.yml
global: scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute. evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute. # scrape_timeout is set to the global default (10s). # Alertmanager configuration alerting: alertmanagers: - static_configs: - targets: ['192.168.32.117:9093'] # - alertmanager:9093 # Load rules once and periodically evaluate them according to the global 'evaluation_interval'. rule_files: - "node_down.yml" # - "node-exporter-alert-rules.yml" # - "first_rules.yml" # - "second_rules.yml" # A scrape configuration containing exactly one endpoint to scrape: # Here it's Prometheus itself. scrape_configs: # IO存储节点组 - job_name: 'io' scrape_interval: 8s static_configs: #端口为node-exporter启动的端口 - targets: ['192.168.32.117:9100'] - targets: ['192.168.32.196:9100'] - targets: ['192.168.32.136:9100'] - targets: ['192.168.32.193:9100'] - targets: ['192.168.32.153:9100'] - targets: ['192.168.32.185:9100'] - targets: ['192.168.32.190:19100'] - targets: ['192.168.32.192:9100'] # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config. - job_name: 'cadvisor' static_configs: #端口为cadvisor启动的端口 - targets: ['192.168.32.117:18080'] - targets: ['192.168.32.193:8080'] - targets: ['192.168.32.153:8080'] - targets: ['192.168.32.185:8080'] - targets: ['192.168.32.190:18080'] - targets: ['192.168.32.192:18080']
node_down.yml
groups: - name: node_down rules: - alert: InstanceDown expr: up == 0 for: 1m labels: user: test annotations: summary: 'Instance {{ $labels.instance }} down' description: '{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 1 minutes.' #剩余内存小于10% - alert: 剩余内存小于10% expr: node_memory_MemAvailable_bytes / node_memory_MemTotal_bytes * 100 < 10 for: 2m labels: severity: warning annotations: summary: Host out of memory (instance {{ $labels.instance }}) description: "Node memory is filling up (< 10% left)\n VALUE = {{ $value }}\n LABELS = {{ $labels }}" #剩余磁盘小于10% - alert: 剩余磁盘小于10% expr: (node_filesystem_avail_bytes * 100) / node_filesystem_size_bytes < 10 and ON (instance, device, mountpoint) node_filesystem_readonly == 0 for: 2m labels: severity: warning annotations: summary: Host out of disk space (instance {{ $labels.instance }}) description: "Disk is almost full (< 10% left)\n VALUE = {{ $value }}\n LABELS = {{ $labels }}" #cpu负载 > 80% - alert: CPU负载 > 80% expr: 100 - (avg by(instance) (rate(node_cpu_seconds_total{mode="idle"}[2m])) * 100) > 80 for: 0m labels: severity: warning annotations: summary: Host high CPU load (instance {{ $labels.instance }}) description: "CPU load is > 80%\n VALUE = {{ $value }}\n LABELS = {{ $labels }}"
告警:https://awesome-prometheus-alerts.grep.to/rules#prometheus-self-monitoring
官网仪表盘:https://grafana.com/grafana/dashboards/
到此这篇关于docker部署grafana+prometheus配置的文章就介绍到这了,更多相关docker部署grafana+prometheus内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
最新评论