分享5个python提速技巧,速度瞬间提上来了
更新时间:2022年01月04日 11:03:44 作者: 小木_.
这篇文章主要给大家分享的是5个python提速技巧,工作或者学习的过程中难免会遇到卡顿问题,下面的提速技巧具有一定的参考价值,需要的小伙伴可以参考一下
1、跳过迭代对象的开头
string_from_file = """ // Wooden: ... // LaoLi: ... // // Whole: ... Wooden LaoLi... """ import itertools for line in itertools.dropwhile(lambda line: line.startswith("//"), string_from_file.split(" ")): print(line)
2、避免数据复制
# 不推荐写法,代码耗时:6.5秒 def main(): size = 10000 for _ in range(size): value = range(size) value_list = [x for x in value] square_list = [x * x for x in value_list] main()
# 推荐写法,代码耗时:4.8秒 def main(): size = 10000 for _ in range(size): value = range(size) square_list = [x * x for x in value] # 避免无意义的复制
3、避免变量中间变量
# 不推荐写法,代码耗时:0.07秒 def main(): size = 1000000 for _ in range(size): a = 3 b = 5 temp = a a = b b = temp main()
# 推荐写法,代码耗时:0.06秒 def main(): size = 1000000 for _ in range(size): a = 3 b = 5 a, b = b, a # 不借助中间变量 main()
4、循环优化
# 不推荐写法。代码耗时:6.7秒 def computeSum(size: int) -> int: sum_ = 0 i = 0 while i < size: sum_ += i i += 1 return sum_ def main(): size = 10000 for _ in range(size): sum_ = computeSum(size) main()
# 推荐写法。代码耗时:4.3秒 def computeSum(size: int) -> int: sum_ = 0 for i in range(size): # for 循环代替 while 循环 sum_ += i return sum_ def main(): size = 10000 for _ in range(size): sum_ = computeSum(size) main()
隐式for循环代替显式for循环
# 推荐写法。代码耗时:1.7秒 def computeSum(size: int) -> int: return sum(range(size)) # 隐式 for 循环代替显式 for 循环 def main(): size = 10000 for _ in range(size): sum = computeSum(size) main()
5、使用numba.jit
# 推荐写法。代码耗时:0.62秒 # numba可以将 Python 函数 JIT 编译为机器码执行,大大提高代码运行速度。 import numba @numba.jit def computeSum(size: float) -> int: sum = 0 for i in range(size): sum += i return sum def main(): size = 10000 for _ in range(size): sum = computeSum(size) main()
到此这篇关于分享5个python提速技巧,速度瞬间提上来了的文章就介绍到这了,更多相关python提速技巧内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python2.X/Python3.X中urllib库区别讲解
本篇文章通过对比给大家详细讲解了在Python2和Python3中urllib库区别以及用法讲解,有需要的朋友跟着学习下吧。2017-12-12
最新评论