OpenCV+MediaPipe实现手部关键点识别
更新时间:2022年01月05日 10:05:44 作者:墙缝里的草
这篇文章主要介绍了如何通过OpenCV MediaPipe实现手部关键点识别,文中的示例代码讲解详细,对我们学习或工作有一定的价值,需要的可以参考一下
可视化辅助函数
在下面的代码的注释内有大致的操作
基本操作与前面的人脸检测的操作相似,增加了可视化的辅助函数
import matplotlib.pyplot as plt # 使用ipython的魔法方法,将绘制出的图像直接嵌入在notebook单元格中 import cv2 # 定义可视化图像函数 def look_img(img): '''opencv读入图像格式为BGR,matplotlib可视化格式为RGB,因此需将BGR转RGB''' img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(img_RGB) plt.show() #调用摄像头拍照 time.sleep(2) # 运行本代码后两秒拍照 # 获取摄像头,0为电脑默认摄像头,1为外接摄像头 cap = cv2.VideoCapture(0) # 从摄像头捕获一帧画面 success, image = cap.read() # 关闭摄像头 cap.release() # 关闭图像窗口 cv2.destroyAllWindows() cv2.imwrite('photo.jpg', image) #调用摄像头拍视频 import cv2 import time # 定义逐帧处理函数,可不进行任何处理,直接将摄像头捕获的画面写入视频帧 def process_frame(img): return img output_name = 'record_video.mp4' # 获取摄像头,传入0表示获取系统默认摄像头 cap = cv2.VideoCapture(0) # 打开cap cap.open(0) frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = cap.get(cv2.CAP_PROP_FPS) out = cv2.VideoWriter(output_name, fourcc, fps, (int(frame_size[0]), int(frame_size[1]))) # 无限循环,直到break被触发 while cap.isOpened(): # 获取画面 success, frame = cap.read() if not success: break # 对捕获的帧进行图像处理 frame = process_frame(frame) ## 将帧写入视频文件中 out.write(frame) # 展示处理后的三通道图像 cv2.imshow('press q to break', frame) if cv2.waitKey(1) in [ord('q'), 27]: # 按键盘上的q或esc退出(在英文输入法下) break # 关闭图像窗口 cv2.destroyAllWindows() out.release() # 关闭摄像头 cap.release() print('视频已保存', output_name)
单张图片
import cv2 as cv import mediapipe as mp import tqdm import time import matplotlib.pyplot as plt def look_img(img): img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB) plt.imshow(img_RGB) plt.show() # 手部关键点检测模型 mp_hand=mp.solutions.hands # 导入模型 hands=mp_hand.Hands(static_image_mode=False, max_num_hands=5, min_detection_confidence=0.3, min_tracking_confidence=0.3 ) # 导入绘图函数 mpDraw=mp.solutions.drawing_utils img=cv.imread('hand2.png') # look_img(img) img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB) results=hands.process(img_RGB) if results.multi_hand_landmarks: for hand_idx in range(len(results.multi_hand_landmarks)): hand_21=results.multi_hand_landmarks[hand_idx] mpDraw.draw_landmarks(img, hand_21, mp_hand.HAND_CONNECTIONS) # 可视化 look_img(img) cv.imwrite('hands2.jpg',img) # 在三维坐标系中可视化索引为0的手 mpDraw.plot_landmarks(results.multi_hand_landmarks[0], mp_
摄像头检测
import cv2 # mediapipe人工智能工具包 import mediapipe as mp # 进度条库 from tqdm import tqdm # 时间库 import time # 导入模型 # 导入solution mp_hands = mp.solutions.hands # 导入模型 hands = mp_hands.Hands(static_image_mode=False, # 是静态图片还是连续视频帧 max_num_hands=2, # 最多检测几只手 min_detection_confidence=0.7, # 置信度阈值 min_tracking_confidence=0.5) # 追踪阈值 # 导入绘图函数 mpDraw = mp.solutions.drawing_utils # 处理单帧函数 # 处理帧函数 def process_frame(img): # 水平镜像翻转图像,使图中左右手与真实左右手对应 # 参数 1:水平翻转,0:竖直翻转,-1:水平和竖直都翻转 img = cv2.flip(img, 1) # BGR转RGB img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将RGB图像输入模型,获取预测结果 results = hands.process(img_RGB) if results.multi_hand_landmarks: # 如果有检测到手 # 遍历每一只检测出的手 for hand_idx in range(len(results.multi_hand_landmarks)): hand_21 = results.multi_hand_landmarks[hand_idx] # 获取该手的所有关键点坐标 mpDraw.draw_landmarks(img, hand_21, mp_hands.HAND_CONNECTIONS) # 可视化 # 在三维坐标系中可视化索引为0的手 # mpDraw.plot_landmarks(results.multi_hand_landmarks[0], mp_hands.HAND_CONNECTIONS) return img # 导入opencv-python import cv2 import time # 获取摄像头,传入0表示获取系统默认摄像头 cap = cv2.VideoCapture(1) # 打开cap cap.open(0) # 无限循环,直到break被触发 while cap.isOpened(): # 获取画面 success, frame = cap.read() if not success: print('Error') break ## !!!处理帧函数 frame = process_frame(frame) # 展示处理后的三通道图像 cv2.imshow('my_window', frame) if cv2.waitKey(1) in [ord('q'), 27]: # 按键盘上的q或esc退出(在英文输入法下) break # 关闭摄像头 cap.release() # 关闭图像窗口 cv2.destroyAllWindows()
改变关键点数据特征
import cv2 # mediapipe人工智能工具包 import mediapipe as mp # 进度条库 from tqdm import tqdm # 时间库 import time # 导入solution mp_hands = mp.solutions.hands # 导入模型 hands = mp_hands.Hands(static_image_mode=False, # 是静态图片还是连续视频帧 max_num_hands=2, # 最多检测几只手 min_detection_confidence=0.7, # 置信度阈值 min_tracking_confidence=0.5) # 追踪阈值 # 导入绘图函数 mpDraw = mp.solutions.drawing_utils def process_frame(img): # 记录该帧开始处理的时间 start_time = time.time() # 获取图像宽高 h, w = img.shape[0], img.shape[1] # 水平镜像翻转图像,使图中左右手与真实左右手对应 # 参数 1:水平翻转,0:竖直翻转,-1:水平和竖直都翻转 img = cv2.flip(img, 1) # BGR转RGB img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将RGB图像输入模型,获取预测结果 results = hands.process(img_RGB) if results.multi_hand_landmarks: # 如果有检测到手 handness_str = '' index_finger_tip_str = '' for hand_idx in range(len(results.multi_hand_landmarks)): # 获取该手的21个关键点坐标 hand_21 = results.multi_hand_landmarks[hand_idx] # 可视化关键点及骨架连线 mpDraw.draw_landmarks(img, hand_21, mp_hands.HAND_CONNECTIONS) # 记录左右手信息 temp_handness = results.multi_handedness[hand_idx].classification[0].label handness_str += '{}:{} '.format(hand_idx, temp_handness) # 获取手腕根部深度坐标 cz0 = hand_21.landmark[0].z for i in range(21): # 遍历该手的21个关键点 # 获取3D坐标 cx = int(hand_21.landmark[i].x * w) cy = int(hand_21.landmark[i].y * h) cz = hand_21.landmark[i].z depth_z = cz0 - cz # 用圆的半径反映深度大小 radius = max(int(6 * (1 + depth_z * 5)), 0) if i == 0: # 手腕 img = cv2.circle(img, (cx, cy), radius, (0, 0, 255), -1) if i == 8: # 食指指尖 img = cv2.circle(img, (cx, cy), radius, (193, 182, 255), -1) # 将相对于手腕的深度距离显示在画面中 index_finger_tip_str += '{}:{:.2f} '.format(hand_idx, depth_z) if i in [1, 5, 9, 13, 17]: # 指根 img = cv2.circle(img, (cx, cy), radius, (16, 144, 247), -1) if i in [2, 6, 10, 14, 18]: # 第一指节 img = cv2.circle(img, (cx, cy), radius, (1, 240, 255), -1) if i in [3, 7, 11, 15, 19]: # 第二指节 img = cv2.circle(img, (cx, cy), radius, (140, 47, 240), -1) if i in [4, 12, 16, 20]: # 指尖(除食指指尖) img = cv2.circle(img, (cx, cy), radius, (223, 155, 60), -1) scaler = 1 img = cv2.putText(img, handness_str, (25 * scaler, 100 * scaler), cv2.FONT_HERSHEY_SIMPLEX, 1.25 * scaler, (255, 0, 255), 2 * scaler) img = cv2.putText(img, index_finger_tip_str, (25 * scaler, 150 * scaler), cv2.FONT_HERSHEY_SIMPLEX, 1.25 * scaler, (255, 0, 255), 2 * scaler) # 记录该帧处理完毕的时间 end_time = time.time() # 计算每秒处理图像帧数FPS FPS = 1 / (end_time - start_time) # 在图像上写FPS数值,参数依次为:图片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细 img = cv2.putText(img, 'FPS ' + str(int(FPS)), (25 * scaler, 50 * scaler), cv2.FONT_HERSHEY_SIMPLEX, 1.25 * scaler, (255, 0, 255), 2 * scaler) return img # 获取摄像头,传入0表示获取系统默认摄像头 cap = cv2.VideoCapture(0) # 打开cap cap.open(0) # 无限循环,直到break被触发 while cap.isOpened(): # 获取画面 success, frame = cap.read() if not success: break frame = process_frame(frame) # 展示处理后的三通道图像 cv2.imshow('my_window', frame) if cv2.waitKey(1) in [ord('q'), 27]: # 按键盘上的q或esc退出(在英文输入法下) break # 关闭摄像头 cap.release() # 关闭图像窗口 cv2.destroyAllWindows()
以上就是OpenCV+MediaPipe实现手部关键点识别的详细内容,更多关于OpenCV MediaPipe手部关键点识别的资料请关注脚本之家其它相关文章!
相关文章
2023巨详细的Python安装库教程(以pycharm和Anaconda安装pygame为例)
这篇文章主要给大家介绍了巨详细的Python安装库教程,文中以pycharm和Anaconda安装pygame为例,通过图文介绍的非常详细,需要的朋友可以参考下2024-01-01python实现把两个二维array叠加成三维array示例
今天小编就为大家分享一篇python实现把两个二维array叠加成三维array示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2019-11-11Python计算标准差之numpy.std和torch.std的区别
Torch自称为神经网络中的numpy,它会将torch产生的tensor放在GPU中加速运算,就像numpy会把array放在CPU中加速运算,下面这篇文章主要给大家介绍了关于Python Numpy计算标准差之numpy.std和torch.std区别的相关资料,需要的朋友可以参考下2022-08-08
最新评论