python遍历迭代器自动链式处理数据的实例代码

 更新时间:2022年01月09日 15:16:11   作者:365/24/60  
迭代器也是用来遍历对象成员的,下面这篇文章主要给大家介绍了关于python遍历迭代器自动链式处理数据的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

python遍历迭代器自动链式处理数据

pytorch.utils.data可兼容迭代数据训练处理,在dataloader中使用提高训练效率:借助迭代器避免内存溢出不足的现象、借助链式处理使得数据读取利用更高效(可类比操作系统的资源调控)

书接上文,使用迭代器链式处理数据,在Process类的__iter__方法中执行挂载的预处理方法,可以嵌套包裹多层处理方法,类似KoaJs洋葱模型,在for循环时,自动执行预处理方法返回处理后的数据

分析下述示例中输入数据依次执行顺序:travel -> deep -> shuffle -> sort -> batch,实际由于嵌套循环或设置缓存的存在,数据流式会有变化,具体如后图分析

from torch.utils.data import IterableDataset
# ...

import random

class Process(IterableDataset):
    def __init__(self, data, f):
        self.data = data
        # 绑定处理函数
        self.f = f   
    def __iter__(self):
        # for循环遍历时,返回一个当前环节处理的迭代器对象
        return self.f(iter(self.data)) 

a = ['a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9']
b = ['b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9']
c = ['c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9']
# data = [[j + str(i) for i in range(10)] for j in ['a','b', 'c'] ]
data = [a, b, c]
def travel(d):
    for i in d:
        # print('travel ', i)
        yield i
def deep(d):
    for arr in d:
        for item in arr:
            yield item

def shuffle(d, sf_size=5):
    buf = []
    for i in d:
        buf.append(i)
        if len(buf) >= sf_size:
            random.shuffle(buf)
            for j in buf:
                # print('shuffle', j)
                yield j
            buf = []
    for k in buf:
        yield k

def sort(d):
    buf = []
    for i in d:
        buf.append(i)
        if len(buf) >= 3:
            for i in buf:
                # print('sort', i)
                yield i
            buf = []
    for k in buf:
        yield k

def batch(d):
    buf = []
    for i in d:
        buf.append(i)
        if len(buf) >= 16:
            for i in buf:
                # print('batch', i)
                yield i
            buf = []
# 对训练数据进行的多个预处理步骤
dataset = Process(data, travel)
dataset = Process(dataset , deep)
dataset = Process(dataset , shuffle)
dataset = Process(dataset , sort)
train_dataset = Process(p, batch)

# 可在此处断点测试
for i in p:
    print(i, 'train')

# train_data_loader = DataLoader(train_dataset,num_workers=args.num_workers,prefetch_factor=args.prefetch)
# train(model , train_data_loader)

由上可以构造数据流式方向 :batch(iter(sort(iter(shuffle(iter(deep(iter(travel(iter( d ))))))))))

根据数据流式抽取部分过程画出时序图如下:

附:python 手动遍历迭代器

想遍历一个可迭代对象中的所有元素,但是却不想使用for 循环

为了手动的遍历可迭代对象,使用next() 函数并在代码中捕获StopIteration 异常。比如,下面的例子手动读取一个文件中的所有行

def manual_iter():
    with open('/etc/passwd') as f:
        try:
            while True:
                line = next(f)
                print(line, end='')
        except StopIteration:
            pass

通常来讲, StopIteration 用来指示迭代的结尾。然而,如果你手动使用上面演示的next() 函数的话,你还可以通过返回一个指定值来标记结尾,比如None 。下面是示例:

with open('/etc/passwd') as f:
    while True:
        line = next(f)
        if line is None:
            break
    print(line, end='')

大多数情况下,我们会使用for 循环语句用来遍历一个可迭代对象。但是,偶尔也需要对迭代做更加精确的控制,这时候了解底层迭代机制就显得尤为重要了。下面的交互示例向我们演示了迭代期间所发生的基本细节:

>>> items = [1, 2, 3]
>>> # Get the iterator
>>> it = iter(items) # Invokes items.__iter__()
>>> # Run the iterator
>>> next(it) # Invokes it.__next__()
1
>>> next(it)
2
>>> next(it)
3
>>> next(it)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>>

总结

到此这篇关于python遍历迭代器自动链式处理数据的文章就介绍到这了,更多相关python自动链式处理数据内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 十行代码使用Python写一个USB病毒

    十行代码使用Python写一个USB病毒

    本文给大家分享一个基于十行代码使用Python写一个USB病毒,很简单,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-06-06
  • python itsdangerous模块的具体使用方法

    python itsdangerous模块的具体使用方法

    这篇文章主要介绍了python itsdangerous模块的具体使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • 一文带你探寻Python中的装饰器

    一文带你探寻Python中的装饰器

    这篇文章就来和大家详细讲一讲Python中装饰器的相关知识,文中的示例代码讲解详细,对我们深入了解Python有一定的帮助,感兴趣的可以了解一下
    2023-04-04
  • python3 cookbook解压可迭代对象赋值给多个变量的问题及解决方案

    python3 cookbook解压可迭代对象赋值给多个变量的问题及解决方案

    这篇文章主要介绍了python3 cookbook-解压可迭代对象赋值给多个变量,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2024-01-01
  • 使用Python去除字符串中某个字符的多种实现方式比较

    使用Python去除字符串中某个字符的多种实现方式比较

    python中字符串是不可变的,所以无法直接删除字符串之间的特定字符,下面这篇文章主要给大家介绍了关于使用Python去除字符串中某个字符的多种实现方式比较的相关资料,需要的朋友可以参考下
    2022-06-06
  • 浅谈python类属性的访问、设置和删除方法

    浅谈python类属性的访问、设置和删除方法

    下面小编就为大家带来一篇浅谈python类属性的访问、设置和删除方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-07-07
  • 浅谈Python处理json字符串为什么不建议使用eval()

    浅谈Python处理json字符串为什么不建议使用eval()

    本文主要介绍了Python处理json字符串为什么不建议使用eval(),文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-10-10
  • Flask框架学习笔记之使用Flask实现表单开发详解

    Flask框架学习笔记之使用Flask实现表单开发详解

    这篇文章主要介绍了Flask框架学习笔记之使用Flask实现表单开发,结合实例形式较为详细的分析了flask框架表单模板定义、数据提交等相关操作技巧,需要的朋友可以参考下
    2019-08-08
  • 详解Python的整数是如何实现的

    详解Python的整数是如何实现的

    本文我们来聊一聊Python的整数,我们知道Python的整数是不会溢出的,换句话说,它可以计算无穷大的数,只要你的内存足够,它就能计算。但问题是,Python底层又是C实现的,那么它是怎么做到整数不溢出的呢?本文就来详细说说
    2022-11-11
  • Django实现网页分页功能

    Django实现网页分页功能

    这篇文章主要介绍了Django实现网页分页功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-10-10

最新评论