用python爬取豆瓣前一百电影
网站爬取的流程图:
实现项目我们需要运用以下几个知识点
一、获取网页
1.找网页规律;
2.使用 for 循环语句获得网站前4页的网页链接;
3.使用 Network 选项卡查找Headers信息;
4.使用 requests.get() 函数带着 Headers 请求网页。
二、解析网页
1.使用 BeautifulSoup 解析网页;
2.使用 BeautifulSoup 对象调用 find_all() 方法定位包含单部电影全部信息的标签;
3.使用 Tag.text 提取序号、电影名、评分、推荐语;
4.使用 Tag['属性名'] 提取电影详情链接。
三、存储数据
1.使用 with open() as … 创建要写入内容的 csv 文件;
2.使用 csv.DictWriter() 将文件对象转换为 DictWriter 对象;
3.参数 fieldnames 用来设置 csv 文件的表头;
4.使用 writeheader() 写入表头;
5.使用 writerows() 将内容写入 csv 文件。
实现代码:
import csvimport requestsfrom bs4 import BeautifulSoup# 设置列表,用以存储每部电影的信息data_list = []# 设置请求头headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36'}# 使用 for 循环遍历取值范围为 0~3 的数据for page_number in range(4): # 设置要请求的网页链接 url = 'https://movie.douban.com/top250?start={}&filter='.format(page_number * 25) # 请求网页 movies_list_res = requests.get(url, headers=headers) # 解析请求到的网页内容 bs = BeautifulSoup(movies_list_res.text, 'html.parser') # 搜索网页中所有包含单部电影全部信息的 Tag movies_list = bs.find_all('div', class_='item') # 使用 for 循环遍历搜索结果 for movie in movies_list: # 提取电影的序号 movie_num = movie.find('em').text # 提取电影名 movie_name = movie.find('span').text # 提取电影的评分 movie_score = movie.find("span",class_='rating_num').text # 提取电影的推荐语 movie_instruction = movie.find("span",class_='inq').text # 提取电影的链接 movie_link = movie.find('a')['href'] # 将信息添加到字典中 movie_dict = { '序号': movie_num, '电影名': movie_name, '评分': movie_score, '推荐语': movie_instruction, '链接': movie_link } # 打印电影的信息 print(movie_dict) # 存储每部电影的信息 data_list.append(movie_dict)# 新建 csv 文件,用以存储电影信息with open('movies.csv', 'w', encoding='utf-8-sig') as f: # 将文件对象转换成 DictWriter 对象 f_csv = csv.DictWriter(f, fieldnames=['序号', '电影名', '评分', '推荐语', '链接']) # 写入表头与数据 f_csv.writeheader() f_csv.writerows(data_list)
代码分析:
(1)通过观察网站一页的电影数,可以发现一页只有 25 部电影的信息。
也就是说我们需要爬取网站前4页(100 = 25*4)的电影信息。
这里我们使用了遍历,爬取前四页的数据。
(2)通过快捷键打开网页的开发者工具(Windows 用户可以在浏览器页面下按 Ctrl + Shift + I
键或者直接F12唤出浏览器开发者工具,Mac 用户的快捷键为 command + option + I
)。
接着使用开发者工具中的指针工具,大致查看一下前两部电影中,需爬取的信息所在位置,观察一下其中是否有什么规律。
可以发现第一部电影里序号、电影名、评分、推荐语以及详情链接在class
属性值为"item"的标签里。
(3)豆瓣电影 Top250 的 Robots 协议
并没有看到Disallow: /Top250,这说明可以对这个网页进行爬取。
(4)在互联网世界中,网络请求会将浏览器信息储存在请求头
(Request Header)当中。
只要我们将浏览器信息复制下来,在爬虫程序只要在发起请求时,设置好与请求头
对应的参数,即可成功伪装成浏览器。
(5)代码思路
1)熟练地使用开发者工具的指针工具,可以很方便地帮助我们定位数据。
2)用指针工具定位到各个数据所在位置后,查看它们的规律。
3)想要提取的标签如果具有属性,可以使用 Tag.find(HTML元素名, HTML属性名='')来提取;没有属性的话,可以在这个标签附近找到一个有属性的标签,然后再进行 find() 提取。
通过上述步骤将信息爬取下来后,就走到我们爬虫的最后一步——存储数据。
(6)存储数据
1)调用 csv 模块中类 DictWriter 的语法为:csv.DictWriter(f, fieldnames)
。语法中的参数 f 是 open() 函数打开的文件对象;参数 fieldnames 用来设置文件的表头;
2)执行csv.DictWriter(f, fieldnames)
后会得到一个 DictWriter 对象;
3)得到的 DictWriter 对象可以调用 writeheader()
方法,将 fieldnames 写入 csv 的第一行;
4)最后,调用 writerows()
方法将多个字典写进 csv 文件中。
运行结果:
生成的CSV文件:
总结
到此这篇关于用python爬取豆瓣前一百电影的文章就介绍到这了,更多相关python爬取豆瓣电影内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Pytorch使用卷积神经网络对CIFAR10图片进行分类方式
这篇文章主要介绍了Pytorch使用卷积神经网络对CIFAR10图片进行分类方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2024-02-02Python redis操作实例分析【连接、管道、发布和订阅等】
这篇文章主要介绍了Python redis操作,结合实例形式分析了Python redis的连接、管道、发布和订阅等相关概念、原理及操作技巧,需要的朋友可以参考下2019-05-05
最新评论