Pandas实现groupby分组统计的实践

 更新时间:2022年01月20日 10:56:42   作者:梦捷者  
本文主要介绍了Pandas实现groupby分组统计的实践,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

类似SQL:
select city,max(temperature) from city_weather group by city;

groupby:先对数据分组,然后在每个分组上应用聚合函数、转换函数

本次演示:
一、分组使用聚合函数做数据统计
二、遍历groupby的结果理解执行流程
三、实例分组探索天气数据

1、创建数据和导入包

import pandas as pd
import numpy as np
# 加上这一句,能在jupyter notebook展示matplot图表
%matplotlib inline

df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
                   'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                   'C': np.random.randn(8),
                   'D': np.random.randn(8)})

2、分组使用聚合函数做数据统计

1、单个列groupby,查询所有数据列的统计

df.groupby('A').sum()

groupby中的’A’变成了数据的索引列
因为要统计sum,但B列不是数字,所以被自动忽略掉

2、多个列groupby,查询所有数据列的统计

df.groupby(['A','B']).mean()

我们看到:(‘A’,‘B’)成对变成了二级索引

df.groupby(['A','B'], as_index=False).mean() #这会使得A、B两列不会成为二级索引

3、同时查看多种数据统计

df.groupby('A').agg([np.sum, np.mean, np.std])#列变成了多级索引

4、查看单列的结果数据统计

# 方法1:预过滤,性能更好
df.groupby('A')['C'].agg([np.sum, np.mean, np.std])

# 方法2
df.groupby('A').agg([np.sum, np.mean, np.std])['C']

5、不同列使用不同的聚合函数

df.groupby('A').agg({"C":np.sum, "D":np.mean})

3、遍历groupby的结果理解执行流程

for循环可以直接遍历每个group

1、遍历单个列聚合的分组

g = df.groupby('A')

for name,group in g:
    print(name)
    print(group)

可以获取单个分组的数据

g.get_group('bar')

2、遍历多个列聚合的分组

g = df.groupby(['A', 'B'])
for name,group in g:
    print(name)
    print(group)
    print()

name是一个2个元素的tuple,代表不同的列

g.get_group(('foo', 'one'))#可以获取单个分组的数据

可以直接查询group后的某几列,生成Series或者子DataFrame

g['C']

for name, group in g['C']:
    print(name)
    print(group)
    print(type(group))
    print()

其实所有的聚合统计,都是在dataframe和series上进行的

4、实例分组探索天气数据

fpath = "./datas/beijing_tianqi/beijing_tianqi_2018.csv"
df = pd.read_csv(fpath)
# 替换掉温度的后缀℃
df.loc[:, "bWendu"] = df["bWendu"].str.replace("℃", "").astype('int32')
df.loc[:, "yWendu"] = df["yWendu"].str.replace("℃", "").astype('int32')
df.head()
# 新增一列为月份
df['month'] = df['ymd'].str[:7]
df.head()

1、查看每个月的最高温度

data = df.groupby('month')['bWendu'].max()
data
data.plot()#绘图

2、查看每个月的最高温度、最低温度、平均空气质量指数

group_data = df.groupby('month').agg({"bWendu":np.max, "yWendu":np.min, "aqi":np.mean})
group_data.plot()

到此这篇关于Pandas实现groupby分组统计的实践的文章就介绍到这了,更多相关Pandas groupby分组统计内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python+Word2Vec实现中文聊天机器人的示例代码

    python+Word2Vec实现中文聊天机器人的示例代码

    本文主要介绍了python+Word2Vec实现中文聊天机器人,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • python 自定义异常和主动抛出异常(raise)的操作

    python 自定义异常和主动抛出异常(raise)的操作

    这篇文章主要介绍了python 自定义异常和主动抛出异常(raise)的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • Pytest初学者快速上手高效Python测试指南

    Pytest初学者快速上手高效Python测试指南

    这篇文章主要为大家介绍了Pytest初学者快速上手的高效Python测试指南,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • Python+Opencv实现图像匹配功能(模板匹配)

    Python+Opencv实现图像匹配功能(模板匹配)

    这篇文章主要为大家详细介绍了Python+Opencv实现图像匹配功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-10-10
  • python特殊字符作为字符串不转义的问题

    python特殊字符作为字符串不转义的问题

    这篇文章主要介绍了python特殊字符作为字符串不转义的问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-07-07
  • Pytorch Conda环境pack打包迁移报错的处理方案

    Pytorch Conda环境pack打包迁移报错的处理方案

    这篇文章主要介绍了Pytorch Conda环境pack打包迁移报错的处理方案,文中通过代码示例和图文结合的方式给大家介绍的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下
    2024-07-07
  • python能做哪些生活有趣的事情

    python能做哪些生活有趣的事情

    在本篇文章里小编给各位分享了关于python能做的生活有趣的事情,有兴趣的朋友们可以学习下。
    2020-09-09
  • 初探TensorFLow从文件读取图片的四种方式

    初探TensorFLow从文件读取图片的四种方式

    本篇文章主要介绍了初探TensorFLow从文件读取图片的四种方式,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-02-02
  • 利用Python如何画一颗心、小人发射爱心

    利用Python如何画一颗心、小人发射爱心

    这篇文章主要给大家介绍了关于利用Python如何画一颗心、小人发射爱心的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • 通过实例解析python创建进程常用方法

    通过实例解析python创建进程常用方法

    这篇文章主要介绍了通过实例解析python创建进程常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06

最新评论