Python Opencv实现图片切割处理

 更新时间:2022年01月23日 09:53:29   作者:Python之魂  
这篇文章主要为大家详细介绍了Python Opencv实现图片切割处理,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了Python Opencv实现图片的切割处理,供大家参考,具体内容如下

Opencv对图片的切割:

方法一:

import os
from PIL import Image

def splitimage(src, rownum, colnum, dstpath):
    img = Image.open(src)
    w, h = img.size
    if rownum <= h and colnum <= w:
        print('Original image info: %sx%s, %s, %s' % (w, h, img.format, img.mode))
        print('开始处理图片切割, 请稍候...')

        s = os.path.split(src)
        if dstpath == '':
            dstpath = s[0]
        fn = s[1].split('.')
        basename = fn[0]
        ext = fn[-1]

        num = 0
        rowheight = h // rownum
        colwidth = w // colnum
        for r in range(rownum):
            for c in range(colnum):
                box = (c * colwidth, r * rowheight, (c + 1) * colwidth, (r + 1) * rowheight)
                img.crop(box).save(os.path.join(dstpath, basename + '_' + str(num) + '.' + ext), ext)
                num = num + 1

        print('图片切割完毕,共生成 %s 张小图片。' % num)
    else:
        print('不合法的行列切割参数!')

src = input('请输入图片文件路径:')
if os.path.isfile(src):
    dstpath = input('请输入图片输出目录(不输入路径则表示使用源图片所在目录):')
    if (dstpath == '') or os.path.exists(dstpath):
        row = int(input('请输入切割行数:'))
        col = int(input('请输入切割列数:'))
        if row > 0 and col > 0:
            splitimage(src, row, col, dstpath)
        else:
            print('无效的行列切割参数!')
    else:
        print('图片输出目录 %s 不存在!' % dstpath)
else:
    print('图片文件 %s 不存在!' % src)

方法二:

# coding=utf-8
import numpy as np

import cv2
from PIL import Image

image = cv2.imread("../staticimg/oldimg_04.jpg")

b  = np.array([[0,248],  [512,254], [512,512],[0,512]], dtype = np.int32)
c  = np.array([[0,0],  [512,0], [512,254],[0,248]], dtype = np.int32)


roi_t = []
roi_c = []
for i in range(4):
    roi_t.append(b[i])
    roi_c.append(c[i])

roi_t = np.asarray(roi_t)
roi_t = np.expand_dims(roi_t, axis=0)
im = np.zeros(image.shape[:2], dtype="uint8")
cv2.polylines(im, roi_t, 1, 255)
cv2.fillPoly(im, roi_t, 255)

roi_c = np.asarray(roi_c)
roi_c = np.expand_dims(roi_c, axis=0)
imc = np.zeros(image.shape[:2], dtype="uint8")
cv2.polylines(imc, roi_c, 1, 255)
cv2.fillPoly(imc, roi_c, 255)

mask = im
maskc = imc
maskedtop = cv2.bitwise_and(image,image,mask=mask)
maskedbody = cv2.bitwise_and(image,image,mask=maskc)


imp = Image.fromarray(image)

arraytop = np.zeros((maskedtop.shape[0], maskedtop.shape[1], 4), np.uint8)
arraybody = np.zeros((maskedbody.shape[0], maskedbody.shape[1], 4), np.uint8)
arraytop[:, :, 0:3] = maskedtop
arraybody[:, :, 0:3] = maskedbody
arraytop[:, :, 3] = 0
arraytop[:,:,3][np.where(arraytop[:,:,0]>2)]=255
arraytop[:,:,3][np.where(arraytop[:,:,1]>2)]=255
arraytop[:,:,3][np.where(arraytop[:,:,2]>2)]=255
print(arraytop.max())
image_1 = Image.fromarray(arraytop)
image_1.save("666.jpg","PNG")

arraybody[:, :, 3] = 0
arraybody[:,:,3][np.where(arraybody[:,:,0]>2)]=255
arraybody[:,:,3][np.where(arraybody[:,:,1]>2)]=255
arraybody[:,:,3][np.where(arraybody[:,:,2]>2)]=255
print(arraybody.max())
image_2 = Image.fromarray(arraybody)
image_2.save("888.jpg","PNG")
# cv2.imwrite("333.jpg",maskedtop)
# cv2.imwrite("222.jpg",maskedbody)
# ---------------------

# def cut_img(image, array_points,array_points2):
#     b = np.array(array_points, dtype=np.int32)
#     c = np.array(array_points2, dtype=np.int32)
#
#     roi_t = []
#     roi_c = []
#     for i in range(2):
#         roi_t.append(b[i])
#         roi_c.append(c[i])
#
#     roi_t = np.asarray(roi_t)
#     roi_t = np.expand_dims(roi_t, axis=0)
#     im = np.zeros(image.shape[:2], dtype="uint8")
#     cv2.polylines(im, roi_t, 1, 255)
#     cv2.fillPoly(im, roi_t, 255)
#
#     roi_c = np.asarray(roi_c)
#     roi_c = np.expand_dims(roi_c, axis=0)
#     imc = np.zeros(image.shape[:2], dtype="uint8")
#     cv2.polylines(imc, roi_c, 1, 255)
#     cv2.fillPoly(imc, roi_c, 255)
#     mask = im
#     maskc = imc
#     kk = cv2.bitwise_and(image,image,mask=mask)
#     kkc = cv2.bitwise_and(image,image,mask=maskc)
#     cv2.imwrite("333.jpg",kk)
#     cv2.imwrite("222.jpg",kkc)
#     return cv2.bitwise_and(image, image, mask=mask)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python 统计代码耗时的几种方法分享

    python 统计代码耗时的几种方法分享

    本文实例讲述了Python中统计代码片段、函数运行耗时的几种方法,分享给大家,仅供参考。
    2021-04-04
  • Python ModuleNotFoundError: No module named ‘xxx‘可能的解决方案大全

    Python ModuleNotFoundError: No module named ‘xxx‘可能的解决方

    本文主要介绍了Python ModuleNotFoundError: No module named ‘xxx‘可能的解决方案大全,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧Chat Gpt<BR>
    2023-07-07
  • 利用Python创建API服务器并处理RESTful请求

    利用Python创建API服务器并处理RESTful请求

    在软件开发实践中,构建API服务器是一项基础且重要的任务,本文将介绍如何使用Python中的Flask框架创建一个API服务器,并展示如何处理不同的RESTful请求方法,感兴趣的小伙伴可以了解下
    2024-02-02
  • python简单区块链模拟详解

    python简单区块链模拟详解

    这篇文章主要介绍了python简单区块链模拟详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • 如何利用Python连接MySQL数据库实现数据储存

    如何利用Python连接MySQL数据库实现数据储存

    当我们学习了mysql数据库后,我们会想着该如何将python和mysql结合起来运用,下面这篇文章主要给大家介绍了关于如何利用Python连接MySQL数据库实现数据储存的相关资料,需要的朋友可以参考下
    2021-11-11
  • 利用python的socket发送http(s)请求方法示例

    利用python的socket发送http(s)请求方法示例

    这篇文章主要给大家介绍了关于利用python的socket发送http(s)请求的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起看看吧
    2018-05-05
  • Python导入模块的3种方式超级详细讲解

    Python导入模块的3种方式超级详细讲解

    这篇文章主要给大家介绍了关于Python导入模块的3种方式,本文介绍了在Python中使用模块的概念和不同的导入方式,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2023-12-12
  • Python全栈之作用域和闭包

    Python全栈之作用域和闭包

    这篇文章主要为大家介绍了Python作用域和闭包,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • Python中requests、aiohttp、httpx性能比拼

    Python中requests、aiohttp、httpx性能比拼

    本文主要介绍了Python中requests、aiohttp、httpx性能比拼,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-06-06
  • Python分支语句常见的使用方法

    Python分支语句常见的使用方法

    这篇文章主要介绍了Python分支语句常见的使用方法,Python分支语句,也称为选择语句,体现了程序的选择结构,即对应不同的场景,选择不同的处理方式,具体常见的用法需要的朋友可参考下面文章内容
    2022-06-06

最新评论