Python爬取雪中悍刀行弹幕分析并可视化详程

 更新时间:2022年01月26日 15:00:50   作者:嗨学编程  
这篇文章主要介绍了用Python爬虫+数据分析+数据可视化,分析《雪中悍刀行》弹幕,本文很适合初学python的同学入门阅读,需要的朋友可以参考下

哔哔一下

雪中悍刀行兄弟们都看过了吗?感觉看了个寂寞,但又感觉还行,原谅我没看过原著小说~

豆瓣评分5.8,说明我还是没说错它的。

当然,这并不妨碍它波播放量嘎嘎上涨,半个月25亿播放,平均一集一个亿,就是每天只有一集有点难受。

我们今天就来采集一下它的弹幕,实现数据可视化,看看弹幕文化都输出了什么~

爬虫部分

我们将它的弹幕先采集下来,保存到Excel表格~

首先安装一下这两个模块

requests     # 发送网络请求
pandas as pd # 保存数据

不会安装模块移步主页看我置顶文章,有专门详细讲解安装模块问题。

代码部分

import requests     # 发送网络请求
import pandas as pd # 保存数据

headers = {
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36'
}
# 构建一个列表储存数据
data_list = []
for page in range(15, 1500, 30):
    try:
        url = f'https://mfm.video.qq.com/danmu?otype=json&target_id=7626435152%26vid%3Dp0041oidttf&session_key=0%2C174%2C1642248894&timestamp={page}'
        # 1. 发送网络请求
        response = requests.get(url=url, headers=headers)
        # 2. 获取数据 弹幕内容 <Response [200]>: 告诉我们响应成功
        json_data = response.json()
        # print(json_data)
        # 3. 解析数据(筛选数据) 提取想要的一些内容 不想要的忽略掉
        comments = json_data['comments']
        for comment in comments:
            data_dict = {}
            data_dict['commentid'] = comment['commentid']
            data_dict['content'] = comment['content']
            data_dict['opername'] = comment['opername']
            print(data_dict)
            data_list.append(data_dict)
    except:
        pass
# 4. 保存数据 wps 默认以gbk的方式打开的
df = pd.DataFrame(data_list)
# 乱码, 指定编码 为 utf-8 或者是 gbk 或者 utf-8-sig
df.to_csv('data.csv', encoding='utf-8-sig', index=False)

效果展示

数据可视化

数据到手了,咱们就开始制作词云图分析了。

这两个模块需要安装一下

jieba
pyecharts

代码展示

import jieba
from pyecharts.charts import WordCloud
import pandas as pd
from pyecharts import options as opts

wordlist = []
data = pd.read_csv('data.csv')['content']
data

data_list = data.values.tolist()
data_str = ' '.join(data_list)
words = jieba.lcut(data_str)

for word in words:
    if len(word) > 1:
        wordlist.append({'word':word, 'count':1})
df = pd.DataFrame(wordlist)

dfword = df.groupby('word')['count'].sum()
dfword2 = dfword.sort_values(ascending=False)

dfword = df.groupby('word')['count'].sum()
dfword2 = dfword.sort_values(ascending=False)

dfword3['word'] = dfword3.index
dfword3

word = dfword3['word'].tolist()
count = dfword3['count'].tolist()

a = [list(z) for z in zip(word, count)]
c = (
    WordCloud()
    .add('', a, word_size_range=[10, 50], shape='circle')
    .set_global_opts(title_opts=opts.TitleOpts(title="词云图"))
)
c.render_notebook()

效果展示

词云图效果

可以看到,这条、暴富和最后三个评论数据最多,咱们看看统计数据。

视频讲解

所有步骤都在视频有详细讲解

Python爬虫+数据分析+数据可视化(分析《雪中悍刀行》弹幕)

福利环节

弹幕和词云图都有了,没有视频就说不过去,代码我整出来了,大家可以自己去试试,我就不展示了,展示了你们就看不到了。

import requests
import re
from tqdm import tqdm

url = 'https://vd.l.qq.com/proxyhttp'
data = {
    'adparam': "pf=in&ad_type=LD%7CKB%7CPVL&pf_ex=pc&url=https%3A%2F%2Fv.qq.com%2Fx%2Fcover%2Fmzc0020036ro0ux%2Fc004159c18o.html&refer=https%3A%2F%2Fv.qq.com%2Fx%2Fsearch%2F&ty=web&plugin=1.0.0&v=3.5.57&coverid=mzc0020036ro0ux&vid=c004159c18o&pt=&flowid=55e20b5f153b460e8de68e7a25ede1bc_10201&vptag=www_baidu_com%7Cx&pu=-1&chid=0&adaptor=2&dtype=1&live=0&resp_type=json&guid=58c04061fed6ba662bd7d4c4a7babf4f&req_type=1&from=0&appversion=1.0.171&uid=115600983&tkn=3ICG94Dn33DKf8LgTEl_Qw..&lt=qq&platform=10201&opid=03A0BB50713BC1C977C0F256056D2E36&atkn=75C3D1F2FFB4B3897DF78DB2CF27A207&appid=101483052&tpid=3&rfid=f4e2ed2359bc13aa3d87abb6912642cf_1642247026",
    'buid': "vinfoad",
    'vinfoparam': "spsrt=1&charge=1&defaultfmt=auto&otype=ojson&guid=58c04061fed6ba662bd7d4c4a7babf4f&flowid=55e20b5f153b460e8de68e7a25ede1bc_10201&platform=10201&sdtfrom=v1010&defnpayver=1&appVer=3.5.57&host=v.qq.com&ehost=https%3A%2F%2Fv.qq.com%2Fx%2Fcover%2Fmzc0020036ro0ux%2Fc004159c18o.html&refer=v.qq.com&sphttps=1&tm=1642255530&spwm=4&logintoken=%7B%22main_login%22%3A%22qq%22%2C%22openid%22%3A%2203A0BB50713BC1C977C0F256056D2E36%22%2C%22appid%22%3A%22101483052%22%2C%22access_token%22%3A%2275C3D1F2FFB4B3897DF78DB2CF27A207%22%2C%22vuserid%22%3A%22115600983%22%2C%22vusession%22%3A%223ICG94Dn33DKf8LgTEl_Qw..%22%7D&vid=c004159c18o&defn=&fhdswitch=0&show1080p=1&isHLS=1&dtype=3&sphls=2&spgzip=1&dlver=2&drm=32&hdcp=0&spau=1&spaudio=15&defsrc=1&encryptVer=9.1&cKey=1WuhcCc07Wp6JZEItZs_lpJX5WB4a2CdS8kEoQvxVaqtHEZQ1c_W6myJ8hQOnmDFHMUnGJTDNTvp2vPBr-xE-uhvZyEMY131vUh1H4pgCXe2Op8F_DerfPItmE508flzsHwnEERQEN_AluNDEH6IC8EOljLQ2VfW2sTdospNPlD9535CNT9iSo3cLRH93ogtX_OJeYNVWrDYS8b5t1pjAAuGkoYGNScB_8lMah6WVCJtO-Ygxs9f-BtA8o_vOrSIjG_VH7z0wWI3--x_AUNIsHEG9zgzglpES47qAUrvH-0706f5Jz35DBkQKl4XAh32cbzm4aSDFig3gLiesH-TyztJ3B01YYG7cwclU8WtX7G2Y6UGD4Z1z5rYoM5NpAQ7Yr8GBgYGBgZKAPma&fp2p=1&spadseg=3"
}
headers = {
    'cookie': 'pgv_pvid=7300130020; tvfe_boss_uuid=242c5295a1cb156d; appuser=BF299CB445E3A324; RK=6izJ0rkfNn; ptcz=622f5bd082de70e3e6e9a077923b48f72600cafd5e4b1e585e5f418570fa30fe; ptui_loginuin=1321228067; luin=o3452264669; lskey=000100003e4c51dfb8abf410ca319e572ee445f5a77020ba69d109f47c2ab3d67e58bd099a40c2294c41dbd6; o_cookie=3452264669; uid=169583373; fqm_pvqid=89ea2cc7-6806-4091-989f-5bc2f2cdea5c; fqm_sessionid=7fccc616-7386-4dd4-bba5-26396082df8d; pgv_info=ssid=s2517394073; _qpsvr_localtk=0.13663981383113954; login_type=2; vversion_name=8.2.95; video_omgid=d91995430fa12ed8; LCZCturn=798; lv_play_index=39; o_minduid=9ViQems9p2CBCM5AfqLWT4aEa-btvy40; LPSJturn=643; LVINturn=328; LPHLSturn=389; LZTturn=218; ufc=r24_7_1642333009_1642255508; LPPBturn=919; LPDFturn=470',
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36'
}
response = requests.post(url=url, json=data, headers=headers)
html_data = response.json()['vinfo']
print(html_data)
m3u8_url = re.findall('url":"(.*?)",', html_data)[3]
m3u8_data = requests.get(url=m3u8_url).text
m3u8_data = re.sub('#E.*', '', m3u8_data).split()
for ts in tqdm(m3u8_data):
    ts_1 = 'https://apd-327e87624fa9c6fc7e4593b5030502b1.v.smtcdns.com/vipts.tc.qq.com/AaFUPCn0gS17yiKCHnFtZa7vI5SOO0s7QXr0_3AkkLrQ/uwMROfz2r55goaQXGdGnC2de645-3UDsSmF-Av4cmvPV0YOx/svp_50112/vaemO__lrQCQrrgtQzL5v1kmLVKQZEaG2UBQO4eMRu4BAw6vBUoD1HAf7yUD8BtrL3NLr7bf9yrfSaqK5ufP8vmfEejwt0tuD8aNhyny1M-GJ8T1L1qi0R47t-v8KxV0ha-jJhALtc2N3tgRaTSfRwXwJ_vQObnhIdbyaVlJ2DzvMKoIlKYb_g/'
    ts_url = ts_1 + ts
    ts_content = requests.get(url=ts_url).content
    with open('斗破12.mp4', mode='ab') as f:
        f.write(ts_content)
print('斗破下载完成')

到此这篇关于Python爬取雪中悍刀行弹幕分析并可视化详程的文章就介绍到这了,更多相关Python 爬取雪中悍刀行内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python工程师面试题 与Python Web相关

    Python工程师面试题 与Python Web相关

    这篇文章主要为大家分享了Python工程师面试题,面试题的内容主要与Python Web相关,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-01-01
  • 在Python中实现贪婪排名算法的教程

    在Python中实现贪婪排名算法的教程

    这篇文章主要介绍了在Python中实现贪婪排名算法的教程,也是对学习算法的一个很好的演示,需要的朋友可以参考下
    2015-04-04
  • 通过Python编写一个简单登录功能过程解析

    通过Python编写一个简单登录功能过程解析

    这篇文章主要介绍了通过Python编写一个简单登录功能过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • 2021年值得向Python开发者推荐的VS Code扩展插件

    2021年值得向Python开发者推荐的VS Code扩展插件

    这篇文章主要介绍了2021年值得向Python开发者推荐的VS Code扩展插件,帮助大家更好的利用vscode进行python的开发,感兴趣的朋友可以了解下
    2021-01-01
  • python pprint模块中print()和pprint()两者的区别

    python pprint模块中print()和pprint()两者的区别

    这篇文章主要介绍了python pprint模块中print()和pprint()两者的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • Python字典操作简明总结

    Python字典操作简明总结

    这篇文章主要介绍了Python字典操作简明总结,本文总结了创建字典 、创建一个"默认"字典、遍历字典、获得value值、成员操作符:in或not in 、更新字典、删除字典等常用操作,需要的朋友可以参考下
    2015-04-04
  • Python用input输入列表的实例代码

    Python用input输入列表的实例代码

    在本篇文章里小编给大家整理的是关于Python用input输入列表的实例代码,需要的朋友们可以参考下。
    2020-02-02
  • Python调用百度AI实现身份证识别

    Python调用百度AI实现身份证识别

    这篇文章主要介绍了Python通过调用百度AI的文字识别功能实现对身份证进行识别,代码具有一定的学习价值,感兴趣的朋友一起来看看效果吧
    2021-12-12
  • 连接Python程序与MySQL的教程

    连接Python程序与MySQL的教程

    这篇文章主要介绍了连接Python程序与MySQL的教程,MySQL作为最具人气的数据库,与程序之间的连接也成为了如今Python学习中近乎必备的知识,需要的朋友可以参考下
    2015-04-04
  • python列表的特点分析

    python列表的特点分析

    在本篇文章里小编个大家整理的是一篇关于python列表的特点分析内容总结,有需要的朋友们可以学习下。
    2021-08-08

最新评论