python数据可视化的那些操作你了解吗

 更新时间:2022年01月26日 16:09:18   作者:橙橙小狸猫  
这篇文章主要为大家详细介绍了python数据可视化操作,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助

0. 前言

数据处理过程中,可视化可以更直观得感受数据,因此打算结合自己的一些实践经理,以效果为准写这篇博客。内容应该会不断扩充。

1. matplotlib中figure、subplot和plot等什么关系

记住这几个关系可以结合实际。假设你去外面写生要带哪些工具呢,包括画板、画纸还有画笔,那么就可以一一对应了。

函数工具
figure画板
subplot、add_subplot画纸
plot、hist、scatter画笔

那么再往深处想,画纸贴在画板上,画纸可以裁剪成多块布局在画板上,而画笔只能画在纸上,可能这样讲有点笼统,下面一个代码配合注释就可以清晰明白啦。(感觉需要记住以下代码)

代码

import matplotlib.pyplot as plt
import numpy as np
# 拿起画板
fig = plt.figure()
# 在画板上贴上画纸
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
# 一步完成(直接拿起画板和画纸)-----------------
# ax1 = plt.subplot(221)
# ax2 = plt.subplot(222)
# ax3 = plt.subplot(223)
# ----------------------------------------
# 在画纸上作图
ax1.hist(np.random.randn(100), bins=20, color='k', alpha=0.3)
ax2.scatter(np.arange(30), np.arange(30) + 3 * np.random.randn(30))
ax3.plot(np.random.randn(50).cumsum(), 'k--')
plt.show()

运行结果

在这里插入图片描述

函数解析

代码行作用参考链接
ax1.hist(np.random.randn(100), bins=20, color=‘k’, alpha=0.3)绘制直方图python用hist参数解读

2. 画图的细节修改

依次完成以下的画图效果:

在这里插入图片描述

1.一个正弦函数和一个随机数值的曲线,正弦函数直线,随机数值曲线虚线以及其他样式修改;

2.图例、标签等修改;

3.加上标注,标注范围内用红色矩形表示。

2.1 plot画图形式修改

代码

import matplotlib.pyplot as plt
import numpy as np
# 拿起画板
fig = plt.figure()
# 贴上画纸
ax1 = fig.add_subplot(111)
# 数据准备
x_sin = np.arange(0, 6, 0.001)  # [0, 6]
y_sin = np.sin(x_sin)
data_random = np.zeros(7)  # 生成[-1,1]的7个随机数
for i in range(0, 6):
    data_random[i] = np.random.uniform(-1, 1)
# 画图
ax1.plot(x_sin, y_sin, linestyle='-', color='g', linewidth=3)
ax1.plot(data_random, linestyle='dashed', color='b', marker='o')
plt.show()

运行结果

在这里插入图片描述

2.2 添加图例、标签等

代码

import matplotlib.pyplot as plt
import numpy as np
# 拿起画板
fig = plt.figure()
# 贴上画纸
ax1 = fig.add_subplot(111)
# 数据准备
x_sin = np.arange(0, 6, 0.001)  # [0, 6]
y_sin = np.sin(x_sin)
data_random = np.zeros(7)  # 生成[-1,1]的7个随机数
for i in range(0, 6):
    data_random[i] = np.random.uniform(-1, 1)
# 画图
ax1.plot(x_sin, y_sin, linestyle='-', color='g', linewidth=3, label='sin')
ax1.plot(data_random, linestyle='dashed', color='b', marker='o', label='random')
#-----------------添加部分------------------
# 添加标题
ax1.set_title('Title')
# 添加x轴名称
ax1.set_xlabel('x')
# 设置x轴坐标范围
ax1.set_xlim(xmin=0, xmax=6)
# 添加图例,在plot处加上label
ax1.legend(loc='best')
#----------------------------------------
plt.show()

运行结果

在这里插入图片描述

2.3 在图上画注解和矩形

代码

import matplotlib.pyplot as plt
import numpy as np
# 拿起画板
fig = plt.figure()
# 贴上画纸
ax1 = fig.add_subplot(111)
# 数据准备
x_sin = np.arange(0, 6, 0.001)  # [0, 6]
y_sin = np.sin(x_sin)
data_random = np.zeros(7)  # 生成[-1,1]的7个随机数
for i in range(0, 6):
    data_random[i] = np.random.uniform(-1, 1)
# 画图
ax1.plot(x_sin, y_sin, linestyle='-', color='g', linewidth=3, label='sin')
ax1.plot(data_random, linestyle='dashed', color='b', marker='o', label='random')
# 添加标题
ax1.set_title('Title')
# 添加x轴名称
ax1.set_xlabel('x')
# 设置x轴坐标范围
ax1.set_xlim(xmin=0, xmax=6)
# 添加图例
ax1.legend(loc='best')
#-----------------添加部分------------------
# 注解
ax1.annotate('max', xy=((np.pi) / 2, np.sin(np.pi/2)),
            xytext=((np.pi) / 2, np.sin(np.pi/2)-0.2),
            arrowprops=dict(facecolor='black', headwidth=4, width=2,headlength=4),
            horizontalalignment='left', verticalalignment='top')
ax1.annotate('min', xy=((np.pi) * 3 / 2, np.sin(np.pi * 3 / 2)),
            xytext=((np.pi) * 3 / 2, np.sin(np.pi * 3 / 2)+0.2),
            arrowprops=dict(facecolor='black', headwidth=4, width=2,headlength=4),
            horizontalalignment='left', verticalalignment='top')
# 矩形
print(ax1.axis())
rect = plt.Rectangle((np.pi / 2, ax1.axis()[2]), np.pi, ax1.axis()[3] - ax1.axis()[2], color='r', alpha=0.3)  # 起始坐标点,width, height
ax1.add_patch(rect)
#-----------------------------------------
plt.show()

运行结果

在这里插入图片描述

3. 图形保存

plt.savefig('figpath.png', dpi=400)

注意要放在show前面。

完整代码:

import matplotlib.pyplot as plt
import numpy as np
# 拿起画板
fig = plt.figure()
# 贴上画纸
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
# 数据准备
x_sin = np.arange(0, 6, 0.001)  # [0, 6]
y_sin = np.sin(x_sin)
data_random = np.zeros(7)  # 生成[-1,1]的7个随机数
for i in range(0, 6):
    data_random[i] = np.random.uniform(-1, 1)
# 画图
ax1.plot(x_sin, y_sin, linestyle='-', color='g', linewidth=3, label='sin')
ax1.plot(data_random, linestyle='dashed', color='b', marker='o', label='random')
ax2.plot(x_sin, y_sin, linestyle='-', color='g', linewidth=3, label='sin')
ax2.plot(data_random, linestyle='dashed', color='b', marker='o', label='random')
ax3.plot(x_sin, y_sin, linestyle='-', color='g', linewidth=3, label='sin')
ax3.plot(data_random, linestyle='dashed', color='b', marker='o', label='random')
# # 添加标题
ax2.set_title('Title')
# 添加x轴名称
ax2.set_xlabel('x')
# 设置x轴坐标范围
ax2.set_xlim(xmin=0, xmax=6)
# 添加图例
ax2.legend(loc='best')
ax3.set_title('Title')
# 添加x轴名称
ax3.set_xlabel('x')
# 设置x轴坐标范围
ax3.set_xlim(xmin=0, xmax=6)
# 添加图例
ax3.legend(loc='best')
# 注解
ax3.annotate('max', xy=((np.pi) / 2, np.sin(np.pi/2)),
            xytext=((np.pi) / 2, np.sin(np.pi/2)-0.2),
            arrowprops=dict(facecolor='black', headwidth=4, width=2,headlength=4),
            horizontalalignment='left', verticalalignment='top')
ax3.annotate('min', xy=((np.pi) * 3 / 2, np.sin(np.pi * 3 / 2)),
            xytext=((np.pi) * 3 / 2, np.sin(np.pi * 3 / 2)+0.2),
            arrowprops=dict(facecolor='black', headwidth=4, width=2,headlength=4),
            horizontalalignment='left', verticalalignment='top')
# 矩形
# print(ax1.axis())
rect = plt.Rectangle((np.pi / 2, ax3.axis()[2]), np.pi, ax3.axis()[3] - ax3.axis()[2], color='r', alpha=0.3)  # 起始坐标点,width, height
ax3.add_patch(rect)
#-----------------添加部分------------------
plt.savefig('figpath.png', dpi=400)
#------------------------------------------
plt.show()

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注脚本之家的更多内容!   

相关文章

  • Python编写一个图片自动播放工具(过程详解)

    Python编写一个图片自动播放工具(过程详解)

    使用Python和Pygame库,可以编写一个图片自动播放工具,实现图片的加载、自动循环播放及用户交互功能,工具支持暂停、继续、手动切换图片和调整播放速度,适合在电脑上方便地浏览和展示图片,感兴趣的朋友跟随小编一起看看吧
    2024-09-09
  • 手机使用python操作图片文件(pydroid3)过程详解

    手机使用python操作图片文件(pydroid3)过程详解

    这篇文章主要介绍了手机使用python操作图片文件(pydroid3)过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • 如何通过安装HomeBrew来安装Python3

    如何通过安装HomeBrew来安装Python3

    这篇文章主要介绍了如何通过安装HomeBrew来安装Python3,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • Python之eval()函数危险性浅析

    Python之eval()函数危险性浅析

    这篇文章主要介绍了Python之eval()函数危险性浅析,需要的朋友可以参考下
    2014-07-07
  • python中将txt文件转换为csv文件的三种方法举例

    python中将txt文件转换为csv文件的三种方法举例

    对于大数据的处理基本都是以CSV文件为基础进行的,那么在进行深度学习的处理之前,需要先统一数据文件的格式,下面这篇文章主要给大家介绍了关于python中将txt文件转换为csv文件的三种方法,需要的朋友可以参考下
    2024-06-06
  • 详解Python3 对象组合zip()和回退方式*zip

    详解Python3 对象组合zip()和回退方式*zip

    这篇文章主要介绍了Python3 对象组合zip()和回退方式*zip详解,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-05-05
  • 解决遇到:PytorchStreamReader failed reading zip archive:failed finding central错误问题

    解决遇到:PytorchStreamReader failed reading zip&n

    本文针对"PytorchStreamReaderfailedreadingziparchive:failedfindingcentral"错误提出解决方案,包括检查文件完整性、文件路径,尝试更新PyTorch版本,检查压缩文件格式,代码问题,或寻求技术支持等,希望这些经验能给遇到同样问题的人一个参考
    2024-09-09
  • Python的bit_length函数来二进制的位数方法

    Python的bit_length函数来二进制的位数方法

    今天小编就为大家分享一篇Python的bit_length函数来二进制的位数方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python+logging输出到屏幕将log日志写入文件

    Python+logging输出到屏幕将log日志写入文件

    这篇文章主要给大家介绍了关于Python+logging输出到屏幕将log日志写入文件的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • python单线程文件传输的实例(C/S)

    python单线程文件传输的实例(C/S)

    今天小编就为大家分享一篇python单线程文件传输的实例(C/S),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02

最新评论