Java设计模式之里氏替换原则精解
1.什么是里氏替换原则?
我们都知道,在面向对象编程中有三大特性(封装、继承、多态),在这里我们来说 继承 这个东西。
继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是在设定规范和契约,虽然它不强制要求所有的子类必须遵循这些契约,但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏。
也就是说:继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障。
问题提出:在编程中,如何正确的使用继承? => 里氏替换原则 👇👇👇
- 里氏替换原则(Liskov Substitution Principle)在1988年,由麻省理工学院的以为姓里的女士提出的。
- 如果对每个类型为Tl的对象o1,都有类型为T2的对象o2,使得以Tl定义的所有程序Р在所有的对象o1都代换成o2时,程序Р的行为没有发生变化,那么类型T2是类型TI的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象。
- 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法。
- 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖来解决问题。
2.代码案例
package com.szh.principle.liskov; /** * */ // A类 class A { // 返回两个数的差 public int func1(int num1, int num2) { return num1 - num2; } } // B类继承了A // 增加了一个新功能:完成两个数相加,然后和9求和 class B extends A { //这里,重写了A类的方法, 可能是无意识 public int func1(int a, int b) { return a + b; } public int func2(int a, int b) { return func1(a, b) + 9; } } public class Liskov { public static void main(String[] args) { A a = new A(); System.out.println("11-3=" + a.func1(11, 3)); System.out.println("1-8=" + a.func1(1, 8)); System.out.println("-----------------------"); B b = new B(); System.out.println("11-3=" + b.func1(11, 3)); //这里本意是求出11-3 System.out.println("1-8=" + b.func1(1, 8)); //这里本意是求出1-8 System.out.println("11+3+9=" + b.func2(11, 3)); } }
从代码运行结果中看到,有两行出了问题,这是因为B继承A之后,并且重写了func1方法,那么此时就不会再去执行A类的func1方法了,而是执行B自己的func1方法,而B中func1方法的逻辑是对两个数求和,所以这里你以为的就不再是你以为的了。
3.改进代码
我们发现原来运行正常的相减功能发生了错误。原因就是类B无意中重写了父类的方法,造成原有功能出现错误。在实际编程中,我们常常会通过重写父类的方法完成新的功能,这样写起来虽然简单,但整个继承体系的复用性会比较差。特别是运行多态比较频繁的时候。
通用的做法是: 原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖,聚合,组合等关系代替。
package com.szh.principle.liskov.improve; /** * */ //创建一个更加基础的基类 class Base { //把更加基础的方法和成员写到Base类 } // A类 class A extends Base { // 返回两个数的差 public int func1(int num1, int num2) { return num1 - num2; } } // B类继承了A // 增加了一个新功能:完成两个数相加,然后和9求和 class B extends Base { //如果B需要使用A类的方法,使用组合关系 private A a = new A(); //这里,重写了A类的方法, 可能是无意识 public int func1(int a, int b) { return a + b; } public int func2(int a, int b) { return func1(a, b) + 9; } //我们仍然想使用A的方法 public int func3(int a, int b) { return this.a.func1(a, b); } } public class Liskov { public static void main(String[] args) { A a = new A(); System.out.println("11-3=" + a.func1(11, 3)); System.out.println("1-8=" + a.func1(1, 8)); System.out.println("-----------------------"); B b = new B(); //因为B类不再继承A类,因此调用者不会再认为func1方法是求减法 //调用完成的功能就会很明确 System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3 System.out.println("1+8=" + b.func1(1, 8));//这里本意是求出1+8 System.out.println("11+3+9=" + b.func2(11, 3)); //使用组合仍然可以使用到A类相关方法 System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3 } }
此时我们创建一个更基础的Base类,让A和B都继承这个类,如果还想像之前那样在B中使用A,那么就采用 组合 来解决,即在B类中声明一个 私有的A类成员变量就可以了。
到此这篇关于Java设计模式之里氏替换原则精解的文章就介绍到这了,更多相关Java 里氏替换原则内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Spring的@Value注入复杂类型(通过@value注入自定义类型)
Spring的@Value可以注入复杂类型吗?今天教你通过@value注入自定义类型。如有错误或未考虑完全的地方,望不吝赐教2021-12-12Springboot实现高吞吐量异步处理详解(适用于高并发场景)
这篇文章主要介绍了Springboot实现高吞吐量异步处理详解(适用于高并发场景),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2019-11-11
最新评论