Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题

 更新时间:2022年02月09日 16:49:11   作者:当年的春天  
这篇文章主要介绍了Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库问题,本文通过图文实例相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

前言

最近在做阅读类的业务,需要记录用户的PV,UV;

项目状况:前期尝试业务阶段;

特点:

快速实现(不需要做太重,满足初期推广运营即可)快速投入市场去运营

收集用户的原始数据,三要素:

谁在什么时间阅读哪篇文章

提到PV,UV脑海中首先浮现特点:

需要考虑性能(每个客户每打开一篇文章进行记录)允许数据有较小误差(少部分数据丢失)

架构设计

架构图:

时序图

记录基础数据MySQL表结构

CREATE TABLE `zh_article_count` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `bu_no` varchar(32) DEFAULT NULL COMMENT '业务编码',
  `customer_id` varchar(32) DEFAULT NULL COMMENT '用户编码',
  `type` int(2) DEFAULT '0' COMMENT '统计类型:0APP内文章阅读',
  `article_no` varchar(32) DEFAULT NULL COMMENT '文章编码',
  `read_time` datetime DEFAULT NULL COMMENT '阅读时间',
  `create_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '更新时间',
  `param1` int(2) DEFAULT NULL COMMENT '预留字段1',
  `param2` int(4) DEFAULT NULL COMMENT '预留字段2',
  `param3` int(11) DEFAULT NULL COMMENT '预留字段3',
  `param4` varchar(20) DEFAULT NULL COMMENT '预留字段4',
  `param5` varchar(32) DEFAULT NULL COMMENT '预留字段5',
  `param6` varchar(64) DEFAULT NULL COMMENT '预留字段6',
  PRIMARY KEY (`id`) USING BTREE,
  UNIQUE KEY `uk_zh_article_count_buno` (`bu_no`),
  KEY `key_zh_article_count_csign` (`customer_id`),
  KEY `key_zh_article_count_ano` (`article_no`),
  KEY `key_zh_article_count_rtime` (`read_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='文章阅读统计表';

技术实现方案

SpringBoot

Redis

MySQL

代码实现

完整代码(GitHub,欢迎大家Star,Fork,Watch)

https://github.com/dangnianchuntian/springboot

主要代码展示

Controller

/*
 * Copyright (c) 2020. zhanghan_java@163.com All Rights Reserved.
 * 项目名称:Spring Boot实战解决高并发数据入库: Redis 缓存+MySQL 批量入库
 * 类名称:ArticleCountController.java
 * 创建人:张晗
 * 联系方式:zhanghan_java@163.com
 * 开源地址: https://github.com/dangnianchuntian/springboot
 * 博客地址: https://zhanghan.blog.csdn.net
 */

package com.zhanghan.zhredistodb.controller;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.validation.annotation.Validated;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;
import com.zhanghan.zhredistodb.controller.request.PostArticleViewsRequest;
import com.zhanghan.zhredistodb.service.ArticleCountService;
@RestController
public class ArticleCountController {
    @Autowired
    private ArticleCountService articleCountService;
   /**
    * 记录用户访问记录
    */
    @RequestMapping(value = "/post/article/views", method = RequestMethod.POST)
    public Object postArticleViews(@RequestBody @Validated PostArticleViewsRequest postArticleViewsRequest) {
        return articleCountService.postArticleViews(postArticleViewsRequest);
    }
    /**
     *  批量将缓存中的数据同步到MySQL(模拟定时任务操作)
     */
    @RequestMapping(value = "/post/batch", method = RequestMethod.POST)
    public Object postBatch() {
        return articleCountService.postBatchRedisToDb();
}

Service

/*
 * Copyright (c) 2020. zhanghan_java@163.com All Rights Reserved.
 * 项目名称:Spring Boot实战解决高并发数据入库: Redis 缓存+MySQL 批量入库
 * 类名称:ArticleCountServiceImpl.java
 * 创建人:张晗
 * 联系方式:zhanghan_java@163.com
 * 开源地址: https://github.com/dangnianchuntian/springboot
 * 博客地址: https://zhanghan.blog.csdn.net
 */

package com.zhanghan.zhredistodb.service.impl;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.stream.Collectors;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
import org.springframework.util.CollectionUtils;
import com.alibaba.fastjson.JSON;
import com.zhanghan.zhredistodb.controller.request.PostArticleViewsRequest;
import com.zhanghan.zhredistodb.dto.ArticleCountDto;
import com.zhanghan.zhredistodb.mybatis.mapper.XArticleCountMapper;
import com.zhanghan.zhredistodb.service.ArticleCountService;
import com.zhanghan.zhredistodb.util.wrapper.WrapMapper;
import cn.hutool.core.util.IdUtil;
@Service
public class ArticleCountServiceImpl implements ArticleCountService {
    private static Logger logger = LoggerFactory.getLogger(ArticleCountServiceImpl.class);
    @Autowired
    private RedisTemplate<String, String> strRedisTemplate;
    private XArticleCountMapper xArticleCountMapper;
    @Value("${zh.article.count.redis.key:zh}")
    private String zhArticleCountRedisKey;
    @Value("#{T(java.lang.Integer).parseInt('${zh..article.read.num:3}')}")
    private Integer articleReadNum;
    /**
     * 记录用户访问记录
     */
    @Override
    public Object postArticleViews(PostArticleViewsRequest postArticleViewsRequest) {
        ArticleCountDto articleCountDto = new ArticleCountDto();
        articleCountDto.setBuNo(IdUtil.simpleUUID());
        articleCountDto.setCustomerId(postArticleViewsRequest.getCustomerId());
        articleCountDto.setArticleNo(postArticleViewsRequest.getArticleNo());
        articleCountDto.setReadTime(new Date());
        String strArticleCountDto = JSON.toJSONString(articleCountDto);
        strRedisTemplate.opsForList().rightPush(zhArticleCountRedisKey, strArticleCountDto);
        return WrapMapper.ok();
    }
     * 批量将缓存中的数据同步到MySQL
    public Object postBatchRedisToDb() {
        Date now = new Date();
        while (true) {
            List<String> strArticleCountList =
                    strRedisTemplate.opsForList().range(zhArticleCountRedisKey, 0, articleReadNum);
            if (CollectionUtils.isEmpty(strArticleCountList)) {
                return WrapMapper.ok();
            }
            List<ArticleCountDto> articleCountDtoList = new ArrayList<>();
            strArticleCountList.stream().forEach(x -> {
                ArticleCountDto articleCountDto = JSON.parseObject(x, ArticleCountDto.class);
                articleCountDtoList.add(articleCountDto);
            });
            //过滤出本次定时任务之前的缓存中数据,防止死循环
            List<ArticleCountDto> beforeArticleCountDtoList = articleCountDtoList.stream().filter(x -> x.getReadTime()
                    .before(now)).collect(Collectors.toList());
            if (CollectionUtils.isEmpty(beforeArticleCountDtoList)) {
            xArticleCountMapper.batchAdd(beforeArticleCountDtoList);
            Integer delSize = beforeArticleCountDtoList.size();
            strRedisTemplate.opsForList().trim(zhArticleCountRedisKey, delSize, -1L);
        }
}

测试

模拟用户请求访问后台(多次请求)

查看缓存中访问数据

模拟定时任务将缓存中数据同步到DB中

这时查看缓存中的数据已经没了

查看数据库表结构

总结

  • 项目中定时任务
  • 问演示方便用http代替定时任务调度;实际项目中用XXL-job,参考:定时任务的选型及改造
  • 定时任务项目中用redis锁防止并发(定时任务调度端多次调度等),参考:Redis实现计数器—接口防刷—升级版(Redis+Lua)
  • 后期运营数据可以从阅读记录表中拉数据进行相关分析
  • 访问量大:可以将MySQL中的阅读记录表定时迁移走(MySQL建历史表,MongoDB等)

到此这篇关于Spring Boot实战解决高并发数据入库之 Redis 缓存+MySQL 批量入库的文章就介绍到这了,更多相关Spring Boot高并发数据入库内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用redis分布式锁解决并发线程资源共享问题

    使用redis分布式锁解决并发线程资源共享问题

    这篇文章主要介绍了使用redis分布式锁解决并发线程资源共享问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Redis中常见的几种集群部署方案

    Redis中常见的几种集群部署方案

    本文主要介绍了Redis中常见的几种集群部署方案,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • 一文搞懂Redis最常用String字符串技能

    一文搞懂Redis最常用String字符串技能

    想要一文搞懂Redis最常用字符串技能?你来对地方了,这篇指南将带你深入浅出,轻松掌握Redis字符串的强大功能,别眨眼,跟我们一起,让数据操作变得前所未有的简单,需要的朋友可以参考下
    2024-03-03
  • Redis线程模型的原理分析

    Redis线程模型的原理分析

    Redis是一个高性能的数据存储框架,在高并发的系统设计中,Redis也是一个比较关键的组件,是我们提升系统性能的一大利器,本文详细的介绍了Redis线程模型,感兴趣的可以了解一
    2021-11-11
  • redis分布式锁的go-redis实现方法详解

    redis分布式锁的go-redis实现方法详解

    这篇文章主要介绍了redis分布式锁的go-redis实现方法,本文给大家介绍的非常详细对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • Redis和Lua使用过程中遇到的小问题

    Redis和Lua使用过程中遇到的小问题

    这篇文章主要给大家介绍了关于Redis和Lua使用过程中遇到的小问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-11-11
  • Redis集群的关闭与重启操作

    Redis集群的关闭与重启操作

    这篇文章主要介绍了Redis集群的关闭与重启操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-07-07
  • Redis Cluster集群收缩主从节点详细教程

    Redis Cluster集群收缩主从节点详细教程

    集群收缩的源端就是要下线的主节点,目标端就是在线的主节点,这篇文章主要介绍了Redis Cluster集群收缩主从节点详细教程,需要的朋友可以参考下
    2021-11-11
  • 详解Redis 键和字符串常用命令

    详解Redis 键和字符串常用命令

    字符串是 Redis 最基本的数据结构,它将以一个键 和一个值 储存在 Redis 内部,本文重点给大家介绍Redis键和字符串常用命令,感兴趣的朋友一起看看吧
    2022-02-02
  • Spark删除redis千万级别set集合数据实现分析

    Spark删除redis千万级别set集合数据实现分析

    这篇文章主要为大家介绍了Spark删除redis千万级别set集合数据实现过程分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06

最新评论