使用matplotlib库实现图形局部数据放大显示的实践
更新时间:2022年02月18日 08:51:50 作者:枭志
本文主要介绍了使用matplotlib库实现图形局部数据放大显示的实践,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
一、绘制总体图形
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes from matplotlib.patches import ConnectionPatch import pandas as pd MAX_EPISODES = 300 x_axis_data = [] for l in range(MAX_EPISODES): x_axis_data.append(l) fig, ax = plt.subplots(1, 1) data1 = pd.read_csv('./result/test_reward.csv')['test_reward'].values.tolist()[:MAX_EPISODES] data2 = pd.read_csv('./result/test_reward_att.csv')['test_reward_att'].values.tolist()[:MAX_EPISODES] ax.plot(data1,label="no att") ax.plot(data2,label = "att") ax.legend()
二、插入局部子坐标系
#插入子坐标系 axins = inset_axes(ax, width="40%", height="20%", loc=3, bbox_to_anchor=(0.3, 0.1, 2, 2), bbox_transform=ax.transAxes) #在子坐标系中放入数据 axins.plot(data1) axins.plot(data2)
三、限制局部子坐标系数据范围
#设置放大区间 zone_left = 150 zone_right = 170 # 坐标轴的扩展比例(根据实际数据调整) x_ratio = 0 # x轴显示范围的扩展比例 y_ratio = 0.05 # y轴显示范围的扩展比例 # X轴的显示范围 xlim0 = x_axis_data[zone_left]-(x_axis_data[zone_right]-x_axis_data[zone_left])*x_ratio xlim1 = x_axis_data[zone_right]+(x_axis_data[zone_right]-x_axis_data[zone_left])*x_ratio # Y轴的显示范围 y = np.hstack((data1[zone_left:zone_right], data2[zone_left:zone_right])) ylim0 = np.min(y)-(np.max(y)-np.min(y))*y_ratio ylim1 = np.max(y)+(np.max(y)-np.min(y))*y_ratio # 调整子坐标系的显示范围 axins.set_xlim(xlim0, xlim1) axins.set_ylim(ylim0, ylim1)
(-198439.93763, -134649.56637000002)
四、加上方框和连接线
# 原图中画方框 tx0 = xlim0 tx1 = xlim1 ty0 = ylim0 ty1 = ylim1 sx = [tx0,tx1,tx1,tx0,tx0] sy = [ty0,ty0,ty1,ty1,ty0] ax.plot(sx,sy,"blue") # 画两条线 #第一条线 xy = (xlim0,ylim0) xy2 = (xlim0,ylim1) """ xy为主图上坐标,xy2为子坐标系上坐标,axins为子坐标系,ax为主坐标系。 """ con = ConnectionPatch(xyA=xy2,xyB=xy,coordsA="data",coordsB="data", axesA=axins,axesB=ax) axins.add_artist(con) #第二条线 xy = (xlim1,ylim0) xy2 = (xlim1,ylim1) con = ConnectionPatch(xyA=xy2,xyB=xy,coordsA="data",coordsB="data", axesA=axins,axesB=ax) axins.add_artist(con)
五、总体实现代码
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes from matplotlib.patches import ConnectionPatch import pandas as pd MAX_EPISODES = 300 x_axis_data = [] for l in range(MAX_EPISODES): x_axis_data.append(l) fig, ax = plt.subplots(1, 1) data1 = pd.read_csv('./result/test_reward.csv')['test_reward'].values.tolist()[:MAX_EPISODES] data2 = pd.read_csv('./result/test_reward_att.csv')['test_reward_att'].values.tolist()[:MAX_EPISODES] ax.plot(data1,label="no att") ax.plot(data2,label = "att") ax.legend() #插入子坐标系 axins = inset_axes(ax, width="20%", height="20%", loc=3, bbox_to_anchor=(0.3, 0.1, 2, 2), bbox_transform=ax.transAxes) #在子坐标系中放入数据 axins.plot(data1) axins.plot(data2) #设置放大区间 zone_left = 150 zone_right = 170 # 坐标轴的扩展比例(根据实际数据调整) x_ratio = 0 # x轴显示范围的扩展比例 y_ratio = 0.05 # y轴显示范围的扩展比例 # X轴的显示范围 xlim0 = x_axis_data[zone_left]-(x_axis_data[zone_right]-x_axis_data[zone_left])*x_ratio xlim1 = x_axis_data[zone_right]+(x_axis_data[zone_right]-x_axis_data[zone_left])*x_ratio # Y轴的显示范围 y = np.hstack((data1[zone_left:zone_right], data2[zone_left:zone_right])) ylim0 = np.min(y)-(np.max(y)-np.min(y))*y_ratio ylim1 = np.max(y)+(np.max(y)-np.min(y))*y_ratio # 调整子坐标系的显示范围 axins.set_xlim(xlim0, xlim1) axins.set_ylim(ylim0, ylim1) # 原图中画方框 tx0 = xlim0 tx1 = xlim1 ty0 = ylim0 ty1 = ylim1 sx = [tx0,tx1,tx1,tx0,tx0] sy = [ty0,ty0,ty1,ty1,ty0] ax.plot(sx,sy,"blue") # 画两条线 # 第一条线 xy = (xlim0,ylim0) xy2 = (xlim0,ylim1) """ xy为主图上坐标,xy2为子坐标系上坐标,axins为子坐标系,ax为主坐标系。 """ con = ConnectionPatch(xyA=xy2,xyB=xy,coordsA="data",coordsB="data", axesA=axins,axesB=ax) axins.add_artist(con) # 第二条线 xy = (xlim1,ylim0) xy2 = (xlim1,ylim1) con = ConnectionPatch(xyA=xy2,xyB=xy,coordsA="data",coordsB="data", axesA=axins,axesB=ax) axins.add_artist(con)
到此这篇关于使用matplotlib库实现图形局部数据放大显示的实践的文章就介绍到这了,更多相关matplotlib 图形局部数据放大显示内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
关于文件Permission denied解决方案(pip)
这篇文章主要介绍了文件Permission denied解决方案(pip),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2023-08-08Python多线程编程(七):使用Condition实现复杂同步
这篇文章主要介绍了Python多线程编程(七):使用Condition实现复杂同步,本文讲解通过很著名的“生产者-消费者”模型来来演示在Python中使用Condition实现复杂同步,需要的朋友可以参考下2015-04-04解决使用python print打印函数返回值多一个None的问题
这篇文章主要介绍了解决使用python print打印函数返回值多一个None的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-04-04
最新评论