25个值得收藏的Python文本处理案例
1提取 PDF 内容
# pip install PyPDF2 安装 PyPDF2 import PyPDF2 from PyPDF2 import PdfFileReader # Creating a pdf file object. pdf = open("test.pdf", "rb") # Creating pdf reader object. pdf_reader = PyPDF2.PdfFileReader(pdf) # Checking total number of pages in a pdf file. print("Total number of Pages:", pdf_reader.numPages) # Creating a page object. page = pdf_reader.getPage(200) # Extract data from a specific page number. print(page.extractText()) # Closing the object. pdf.close()
2提取 Word 内容
# pip install python-docx 安装 python-docx import docx def main(): try: doc = docx.Document('test.docx') # Creating word reader object. data = "" fullText = [] for para in doc.paragraphs: fullText.append(para.text) data = '\n'.join(fullText) print(data) except IOError: print('There was an error opening the file!') return if __name__ == '__main__': main()
3提取 Web 网页内容
# pip install bs4 安装 bs4 from urllib.request import Request, urlopen from bs4 import BeautifulSoup req = Request('http://www.cmegroup.com/trading/products/#sortField=oi&sortAsc=false&venues=3&page=1&cleared=1&group=1', headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req).read() # Parsing soup = BeautifulSoup(webpage, 'html.parser') # Formating the parsed html file strhtm = soup.prettify() # Print first 500 lines print(strhtm[:500]) # Extract meta tag value print(soup.title.string) print(soup.find('meta', attrs={'property':'og:description'})) # Extract anchor tag value for x in soup.find_all('a'): print(x.string) # Extract Paragraph tag value for x in soup.find_all('p'): print(x.text)
4读取 Json 数据
import requests import json r = requests.get("https://support.oneskyapp.com/hc/en-us/article_attachments/202761727/example_2.json") res = r.json() # Extract specific node content. print(res['quiz']['sport']) # Dump data as string data = json.dumps(res) print(data)
5读取 CSV 数据
import csv with open('test.csv','r') as csv_file: reader =csv.reader(csv_file) next(reader) # Skip first row for row in reader: print(row)
6删除字符串中的标点符号
import re import string data = "Stuning even for the non-gamer: This sound track was beautiful!\ It paints the senery in your mind so well I would recomend\ it even to people who hate vid. game music! I have played the game Chrono \ Cross but out of all of the games I have ever played it has the best music! \ It backs away from crude keyboarding and takes a fresher step with grate\ guitars and soulful orchestras.\ It would impress anyone who cares to listen!" # Methood 1 : Regex # Remove the special charaters from the read string. no_specials_string = re.sub('[!#?,.:";]', '', data) print(no_specials_string) # Methood 2 : translate() # Rake translator object translator = str.maketrans('', '', string.punctuation) data = data.translate(translator) print(data)
7使用 NLTK 删除停用词
from nltk.corpus import stopwords data = ['Stuning even for the non-gamer: This sound track was beautiful!\ It paints the senery in your mind so well I would recomend\ it even to people who hate vid. game music! I have played the game Chrono \ Cross but out of all of the games I have ever played it has the best music! \ It backs away from crude keyboarding and takes a fresher step with grate\ guitars and soulful orchestras.\ It would impress anyone who cares to listen!'] # Remove stop words stopwords = set(stopwords.words('english')) output = [] for sentence in data: temp_list = [] for word in sentence.split(): if word.lower() not in stopwords: temp_list.append(word) output.append(' '.join(temp_list)) print(output)
8使用 TextBlob 更正拼写
from textblob import TextBlob data = "Natural language is a cantral part of our day to day life, and it's so antresting to work on any problem related to langages." output = TextBlob(data).correct() print(output)
9使用 NLTK 和 TextBlob 的词标记化
import nltk from textblob import TextBlob data = "Natural language is a central part of our day to day life, and it's so interesting to work on any problem related to languages." nltk_output = nltk.word_tokenize(data) textblob_output = TextBlob(data).words print(nltk_output) print(textblob_output)
Output:
['Natural', 'language', 'is', 'a', 'central', 'part', 'of', 'our', 'day', 'to', 'day', 'life', ',', 'and', 'it', "'s", 'so', 'interesting', 'to', 'work', 'on', 'any', 'problem', 'related', 'to', 'languages', '.']
['Natural', 'language', 'is', 'a', 'central', 'part', 'of', 'our', 'day', 'to', 'day', 'life', 'and', 'it', "'s", 'so', 'interesting', 'to', 'work', 'on', 'any', 'problem', 'related', 'to', 'languages']
10使用 NLTK 提取句子单词或短语的词干列表
from nltk.stem import PorterStemmer st = PorterStemmer() text = ['Where did he learn to dance like that?', 'His eyes were dancing with humor.', 'She shook her head and danced away', 'Alex was an excellent dancer.'] output = [] for sentence in text: output.append(" ".join([st.stem(i) for i in sentence.split()])) for item in output: print(item) print("-" * 50) print(st.stem('jumping'), st.stem('jumps'), st.stem('jumped'))
Output:
where did he learn to danc like that?
hi eye were danc with humor.
she shook her head and danc away
alex wa an excel dancer.
--------------------------------------------------
jump jump jump
11使用 NLTK 进行句子或短语词形还原
from nltk.stem import WordNetLemmatizer wnl = WordNetLemmatizer() text = ['She gripped the armrest as he passed two cars at a time.', 'Her car was in full view.', 'A number of cars carried out of state license plates.'] output = [] for sentence in text: output.append(" ".join([wnl.lemmatize(i) for i in sentence.split()])) for item in output: print(item) print("*" * 10) print(wnl.lemmatize('jumps', 'n')) print(wnl.lemmatize('jumping', 'v')) print(wnl.lemmatize('jumped', 'v')) print("*" * 10) print(wnl.lemmatize('saddest', 'a')) print(wnl.lemmatize('happiest', 'a')) print(wnl.lemmatize('easiest', 'a'))
Output:
She gripped the armrest a he passed two car at a time.
Her car wa in full view.
A number of car carried out of state license plates.
**********
jump
jump
jump
**********
sad
happy
easy
12使用 NLTK 从文本文件中查找每个单词的频率
import nltk from nltk.corpus import webtext from nltk.probability import FreqDist nltk.download('webtext') wt_words = webtext.words('testing.txt') data_analysis = nltk.FreqDist(wt_words) # Let's take the specific words only if their frequency is greater than 3. filter_words = dict([(m, n) for m, n in data_analysis.items() if len(m) > 3]) for key in sorted(filter_words): print("%s: %s" % (key, filter_words[key])) data_analysis = nltk.FreqDist(filter_words) data_analysis.plot(25, cumulative=False)
Output:
[nltk_data] Downloading package webtext to
[nltk_data] C:\Users\amit\AppData\Roaming\nltk_data...
[nltk_data] Unzipping corpora\webtext.zip.
1989: 1
Accessing: 1
Analysis: 1
Anyone: 1
Chapter: 1
Coding: 1
Data: 1
...
13从语料库中创建词云
import nltk from nltk.corpus import webtext from nltk.probability import FreqDist from wordcloud import WordCloud import matplotlib.pyplot as plt nltk.download('webtext') wt_words = webtext.words('testing.txt') # Sample data data_analysis = nltk.FreqDist(wt_words) filter_words = dict([(m, n) for m, n in data_analysis.items() if len(m) > 3]) wcloud = WordCloud().generate_from_frequencies(filter_words) # Plotting the wordcloud plt.imshow(wcloud, interpolation="bilinear") plt.axis("off") (-0.5, 399.5, 199.5, -0.5) plt.show()
14NLTK 词法散布图
import nltk from nltk.corpus import webtext from nltk.probability import FreqDist from wordcloud import WordCloud import matplotlib.pyplot as plt words = ['data', 'science', 'dataset'] nltk.download('webtext') wt_words = webtext.words('testing.txt') # Sample data points = [(x, y) for x in range(len(wt_words)) for y in range(len(words)) if wt_words[x] == words[y]] if points: x, y = zip(*points) else: x = y = () plt.plot(x, y, "rx", scalex=.1) plt.yticks(range(len(words)), words, color="b") plt.ylim(-1, len(words)) plt.title("Lexical Dispersion Plot") plt.xlabel("Word Offset") plt.show()
15使用 countvectorizer 将文本转换为数字
import pandas as pd from sklearn.feature_extraction.text import CountVectorizer # Sample data for analysis data1 = "Java is a language for programming that develops a software for several platforms. A compiled code or bytecode on Java application can run on most of the operating systems including Linux, Mac operating system, and Linux. Most of the syntax of Java is derived from the C++ and C languages." data2 = "Python supports multiple programming paradigms and comes up with a large standard library, paradigms included are object-oriented, imperative, functional and procedural." data3 = "Go is typed statically compiled language. It was created by Robert Griesemer, Ken Thompson, and Rob Pike in 2009. This language offers garbage collection, concurrency of CSP-style, memory safety, and structural typing." df1 = pd.DataFrame({'Java': [data1], 'Python': [data2], 'Go': [data2]}) # Initialize vectorizer = CountVectorizer() doc_vec = vectorizer.fit_transform(df1.iloc[0]) # Create dataFrame df2 = pd.DataFrame(doc_vec.toarray().transpose(), index=vectorizer.get_feature_names()) # Change column headers df2.columns = df1.columns print(df2)
Output:
Go Java Python
and 2 2 2
application 0 1 0
are 1 0 1
bytecode 0 1 0
can 0 1 0
code 0 1 0
comes 1 0 1
compiled 0 1 0
derived 0 1 0
develops 0 1 0
for 0 2 0
from 0 1 0
functional 1 0 1
imperative 1 0 1
...
16使用 TF-IDF 创建文档术语矩阵
import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer # Sample data for analysis data1 = "Java is a language for programming that develops a software for several platforms. A compiled code or bytecode on Java application can run on most of the operating systems including Linux, Mac operating system, and Linux. Most of the syntax of Java is derived from the C++ and C languages." data2 = "Python supports multiple programming paradigms and comes up with a large standard library, paradigms included are object-oriented, imperative, functional and procedural." data3 = "Go is typed statically compiled language. It was created by Robert Griesemer, Ken Thompson, and Rob Pike in 2009. This language offers garbage collection, concurrency of CSP-style, memory safety, and structural typing." df1 = pd.DataFrame({'Java': [data1], 'Python': [data2], 'Go': [data2]}) # Initialize vectorizer = TfidfVectorizer() doc_vec = vectorizer.fit_transform(df1.iloc[0]) # Create dataFrame df2 = pd.DataFrame(doc_vec.toarray().transpose(), index=vectorizer.get_feature_names()) # Change column headers df2.columns = df1.columns print(df2)
Output:
Go Java Python
and 0.323751 0.137553 0.323751
application 0.000000 0.116449 0.000000
are 0.208444 0.000000 0.208444
bytecode 0.000000 0.116449 0.000000
can 0.000000 0.116449 0.000000
code 0.000000 0.116449 0.000000
comes 0.208444 0.000000 0.208444
compiled 0.000000 0.116449 0.000000
derived 0.000000 0.116449 0.000000
develops 0.000000 0.116449 0.000000
for 0.000000 0.232898 0.000000
...
17为给定句子生成 N-gram
自然语言工具包:NLTK
import nltk from nltk.util import ngrams # Function to generate n-grams from sentences. def extract_ngrams(data, num): n_grams = ngrams(nltk.word_tokenize(data), num) return [ ' '.join(grams) for grams in n_grams] data = 'A class is a blueprint for the object.' print("1-gram: ", extract_ngrams(data, 1)) print("2-gram: ", extract_ngrams(data, 2)) print("3-gram: ", extract_ngrams(data, 3)) print("4-gram: ", extract_ngrams(data, 4))
文本处理工具:TextBlob
from textblob import TextBlob # Function to generate n-grams from sentences. def extract_ngrams(data, num): n_grams = TextBlob(data).ngrams(num) return [ ' '.join(grams) for grams in n_grams] data = 'A class is a blueprint for the object.' print("1-gram: ", extract_ngrams(data, 1)) print("2-gram: ", extract_ngrams(data, 2)) print("3-gram: ", extract_ngrams(data, 3)) print("4-gram: ", extract_ngrams(data, 4))
Output:
1-gram: ['A', 'class', 'is', 'a', 'blueprint', 'for', 'the', 'object']
2-gram: ['A class', 'class is', 'is a', 'a blueprint', 'blueprint for', 'for the', 'the object']
3-gram: ['A class is', 'class is a', 'is a blueprint', 'a blueprint for', 'blueprint for the', 'for the object']
4-gram: ['A class is a', 'class is a blueprint', 'is a blueprint for', 'a blueprint for the', 'blueprint for the object']
18使用带有二元组的 sklearn CountVectorize 词汇规范
import pandas as pd from sklearn.feature_extraction.text import CountVectorizer # Sample data for analysis data1 = "Machine language is a low-level programming language. It is easily understood by computers but difficult to read by people. This is why people use higher level programming languages. Programs written in high-level languages are also either compiled and/or interpreted into machine language so that computers can execute them." data2 = "Assembly language is a representation of machine language. In other words, each assembly language instruction translates to a machine language instruction. Though assembly language statements are readable, the statements are still low-level. A disadvantage of assembly language is that it is not portable, because each platform comes with a particular Assembly Language" df1 = pd.DataFrame({'Machine': [data1], 'Assembly': [data2]}) # Initialize vectorizer = CountVectorizer(ngram_range=(2, 2)) doc_vec = vectorizer.fit_transform(df1.iloc[0]) # Create dataFrame df2 = pd.DataFrame(doc_vec.toarray().transpose(), index=vectorizer.get_feature_names()) # Change column headers df2.columns = df1.columns print(df2)
Output:
Assembly Machine
also either 0 1
and or 0 1
are also 0 1
are readable 1 0
are still 1 0
assembly language 5 0
because each 1 0
but difficult 0 1
by computers 0 1
by people 0 1
can execute 0 1
...
19使用 TextBlob 提取名词短语
from textblob import TextBlob #Extract noun blob = TextBlob("Canada is a country in the northern part of North America.") for nouns in blob.noun_phrases: print(nouns)
Output:
canada
northern part
america
20如何计算词-词共现矩阵
import numpy as np import nltk from nltk import bigrams import itertools import pandas as pd def generate_co_occurrence_matrix(corpus): vocab = set(corpus) vocab = list(vocab) vocab_index = {word: i for i, word in enumerate(vocab)} # Create bigrams from all words in corpus bi_grams = list(bigrams(corpus)) # Frequency distribution of bigrams ((word1, word2), num_occurrences) bigram_freq = nltk.FreqDist(bi_grams).most_common(len(bi_grams)) # Initialise co-occurrence matrix # co_occurrence_matrix[current][previous] co_occurrence_matrix = np.zeros((len(vocab), len(vocab))) # Loop through the bigrams taking the current and previous word, # and the number of occurrences of the bigram. for bigram in bigram_freq: current = bigram[0][1] previous = bigram[0][0] count = bigram[1] pos_current = vocab_index[current] pos_previous = vocab_index[previous] co_occurrence_matrix[pos_current][pos_previous] = count co_occurrence_matrix = np.matrix(co_occurrence_matrix) # return the matrix and the index return co_occurrence_matrix, vocab_index text_data = [['Where', 'Python', 'is', 'used'], ['What', 'is', 'Python' 'used', 'in'], ['Why', 'Python', 'is', 'best'], ['What', 'companies', 'use', 'Python']] # Create one list using many lists data = list(itertools.chain.from_iterable(text_data)) matrix, vocab_index = generate_co_occurrence_matrix(data) data_matrix = pd.DataFrame(matrix, index=vocab_index, columns=vocab_index) print(data_matrix)
Output:
best use What Where ... in is Python used
best 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0
use 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0
What 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
Where 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
Pythonused 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0
Why 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0
companies 0.0 1.0 0.0 1.0 ... 1.0 0.0 0.0 0.0
in 0.0 0.0 0.0 0.0 ... 0.0 0.0 1.0 0.0
is 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 0.0
Python 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
used 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 0.0
[11 rows x 11 columns]
21使用 TextBlob 进行情感分析
from textblob import TextBlob def sentiment(polarity): if blob.sentiment.polarity < 0: print("Negative") elif blob.sentiment.polarity > 0: print("Positive") else: print("Neutral") blob = TextBlob("The movie was excellent!") print(blob.sentiment) sentiment(blob.sentiment.polarity) blob = TextBlob("The movie was not bad.") print(blob.sentiment) sentiment(blob.sentiment.polarity) blob = TextBlob("The movie was ridiculous.") print(blob.sentiment) sentiment(blob.sentiment.polarity)
Output:
Sentiment(polarity=1.0, subjectivity=1.0)
Positive
Sentiment(polarity=0.3499999999999999, subjectivity=0.6666666666666666)
Positive
Sentiment(polarity=-0.3333333333333333, subjectivity=1.0)
Negative
22使用 Goslate 进行语言翻译
import goslate text = "Comment vas-tu?" gs = goslate.Goslate() translatedText = gs.translate(text, 'en') print(translatedText) translatedText = gs.translate(text, 'zh') print(translatedText) translatedText = gs.translate(text, 'de') print(translatedText)
23使用 TextBlob 进行语言检测和翻译
from textblob import TextBlob blob = TextBlob("Comment vas-tu?") print(blob.detect_language()) print(blob.translate(to='es')) print(blob.translate(to='en')) print(blob.translate(to='zh'))
Output:
fr
¿Como estas tu?
How are you?
你好吗?
24使用 TextBlob 获取定义和同义词
from textblob import TextBlob from textblob import Word text_word = Word('safe') print(text_word.definitions) synonyms = set() for synset in text_word.synsets: for lemma in synset.lemmas(): synonyms.add(lemma.name()) print(synonyms)
Output:
['strongbox where valuables can be safely kept', 'a ventilated or refrigerated cupboard for securing provisions from pests', 'contraceptive device consisting of a sheath of thin rubber or latex that is worn over the penis during intercourse', 'free from danger or the risk of harm', '(of an undertaking) secure from risk', 'having reached a base without being put out', 'financially sound']
{'secure', 'rubber', 'good', 'safety', 'safe', 'dependable', 'condom', 'prophylactic'}
25使用 TextBlob 获取反义词列表
from textblob import TextBlob from textblob import Word text_word = Word('safe') antonyms = set() for synset in text_word.synsets: for lemma in synset.lemmas(): if lemma.antonyms(): antonyms.add(lemma.antonyms()[0].name()) print(antonyms)
Output:
{'dangerous', 'out'}
到此这篇关于25个值得收藏的Python文本处理案例的文章就介绍到这了,更多相关Python文本处理案例内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python详解如何通过sshtunnel pymssql实现远程连接数据库
为了安全起见,很多公司服务器数据库的访问多半是要做限制的,由专门的DBA管理,而且都是做的集群,数据库只能内网访问,所以就有一个直接的问题是,往往多数时候,在别的机器上(比如自己本地),是不能访问数据库的,给日常开发调试造成了很大不便2021-10-10Python 按规则解析并替换字符串中的变量及函数(示例代码)
这篇文章主要介绍了Python 按规则解析并替换字符串中的变量及函数,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2023-11-11
最新评论