Pytorch技法之继承Subset类完成自定义数据拆分

 更新时间:2022年02月20日 16:36:52   作者:Orion's Blog  
这篇文章主要介绍了Pytorch技法之继承Subset类完成自定义数据拆分,下文我们介绍一些下面是加载内置训练数据集的常见操作,需要的小伙伴可以参考一下

我们在 《torch.utils.data.DataLoader与迭代器转换操作》 中介绍了如何使用Pytorch内置的数据集进行论文实验,如 torchvision.datasets 。下面是加载内置训练数据集的常见操作:

from torchvision.datasets import FashionMNIST
from torchvision.transforms import Compose, ToTensor, Normalize
RAW_DATA_PATH = './rawdata'
transform = Compose(
        [ToTensor(),
         Normalize((0.1307,), (0.3081,))
         ]
    )
train_data = FashionMNIST(
        root=RAW_DATA_PATH,
        download=True,
        train=True,
        transform=transform
    )

这里的train_data 做为 dataset 对象,它拥有许多熟悉,我们可以通过以下方法获取样本数据的分类类别集合、样本的特征维度、样本的标签集合等信息。

classes = train_data.classes
num_features = train_data.data[0].shape[0]
train_labels = train_data.targets

print(classes)
print(num_features)
print(train_labels)

输出如下:

['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
28
tensor([9, 0, 0,  ..., 3, 0, 5])

但是,我们常常会在训练集的基础上拆分出验证集(或者只用部分数据来进行训练)。我们想到的第一个方法是使用 torch.utils.data.random_splitdataset 进行划分,下面我们假设划分10000个样本做为训练集,其余样本做为验证集:

from torch.utils.data import random_split
k = 10000
train_data, valid_data = random_split(train_data, [k, len(train_data)-k])

注意我们如果打印 train_data 和 valid_data 的类型,可以看到显示:

<class 'torch.utils.data.dataset.Subset'>

已经不再是torchvision.datasets.mnist.FashionMNIST 对象,而是一个所谓的 Subset 对象!此时 Subset 对象虽然仍然还存有 data 属性,但是内置的 target classes 属性已经不复存在,

比如如果我们强行访问 valid_data 的 target 属性:

valid_target = valid_data.target

就会报如下错误:

'Subset' object has no attribute 'target'

但如果我们在后续的代码中常常会将拆分后的数据集也默认为 dataset 对象,那么该如何做到代码的一致性呢?

这里有一个trick,那就是以继承 SubSet 类的方式的方式定义一个新的 CustomSubSet 类,使新类在保持 SubSet 类的基本属性的基础上,拥有和原本数据集类相似的属性,如 targets classes 等:

from torch.utils.data import Subset
class CustomSubset(Subset):
    '''A custom subset class'''
    def __init__(self, dataset, indices):
        super().__init__(dataset, indices)
        self.targets = dataset.targets # 保留targets属性
        self.classes = dataset.classes # 保留classes属性

    def __getitem__(self, idx): #同时支持索引访问操作
        x, y = self.dataset[self.indices[idx]]      
        return x, y 

    def __len__(self): # 同时支持取长度操作
        return len(self.indices)

然后就引出了第二种划分方法,即通过初始化 CustomSubset 对象的方式直接对数据集进行划分(这里为了简化省略了shuffle的步骤):

import numpy as np
from copy import deepcopy
origin_data = deepcopy(train_data)
train_data = CustomSubset(origin_data, np.arange(k))
valid_data = CustomSubset(origin_data, np.arange(k, len(origin_data))-k)

注意: CustomSubset 类的初始化方法的第二个参数 indices 为样本索引,我们可以通过 np.arange() 的方法来创建。

然后,我们再访问 valid_data 对应的 classes 和 targes 属性:

print(valid_data.classes)
print(valid_data.targets)

此时,我们发现可以成功访问这些属性了:

['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
tensor([9, 0, 0,  ..., 3, 0, 5])

当然, CustomSubset 的作用并不只是添加数据集的属性,我们还可以自定义一些数据预处理操作。

我们将类的结构修改如下:

class CustomSubset(Subset):
    '''A custom subset class with customizable data transformation'''
    def __init__(self, dataset, indices, subset_transform=None):
        super().__init__(dataset, indices)
        self.targets = dataset.targets
        self.classes = dataset.classes
        self.subset_transform = subset_transform

    def __getitem__(self, idx):
        x, y = self.dataset[self.indices[idx]]
        
        if self.subset_transform:
            x = self.subset_transform(x)
      
        return x, y   
    
    def __len__(self): 
        return len(self.indices)

我们可以在使用样本前设置好数据预处理算子:

from torchvision import transforms
valid_data.subset_transform = transforms.Compose(\
    [transforms.RandomRotation((180,180))])

这样,我们再像下列这样用索引访问取出数据集样本时,就会自动调用算子完成预处理操作:

print(valid_data[0])

打印结果缩略如下:

(tensor([[[-0.4242, -0.4242, -0.4242, ......-0.4242, -0.4242, -0.4242, -0.4242, -0.4242]]]), 9)

 到此这篇关于Pytorch技法之继承Subset类完成自定义数据拆分的文章就介绍到这了,更多相关继承Subset类完成自定义数据拆分内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Django如何实现密码错误报错提醒

    Django如何实现密码错误报错提醒

    这篇文章主要介绍了Django如何实现密码错误报错提醒,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值
    2020-09-09
  • 在Python的Django框架中创建语言文件

    在Python的Django框架中创建语言文件

    这篇文章主要介绍了在Python的Django框架中创建语言文件的方法,以语言代码来表示语言区域种类,需要的朋友可以参考下
    2015-07-07
  • pyqt5、qtdesigner安装和环境设置教程

    pyqt5、qtdesigner安装和环境设置教程

    这篇文章主要介绍了pyqt5、qtdesigner安装和环境设置方法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09
  • Python基于lxml模块解析html获取页面内所有叶子节点xpath路径功能示例

    Python基于lxml模块解析html获取页面内所有叶子节点xpath路径功能示例

    这篇文章主要介绍了Python基于lxml模块解析html获取页面内所有叶子节点xpath路径功能,结合实例形式较为详细的分析了Python使用lxml模块进行xml节点数据解析的相关操作技巧与注意事项,需要的朋友可以参考下
    2018-05-05
  • python神经网络tf.name_scope和tf.variable_scope函数区别

    python神经网络tf.name_scope和tf.variable_scope函数区别

    这篇文章主要为大家介绍了python神经网络tf.name_scope和tf.variable_scope函数的使用区别,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • Keras 利用sklearn的ROC-AUC建立评价函数详解

    Keras 利用sklearn的ROC-AUC建立评价函数详解

    这篇文章主要介绍了Keras 利用sklearn的ROC-AUC建立评价函数详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • 用Python爬取2022春节档电影信息

    用Python爬取2022春节档电影信息

    大家好,本篇文章主要讲的是用Python爬取2022春节档电影信息,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-01-01
  • python实现经典排序算法的示例代码

    python实现经典排序算法的示例代码

    这篇文章主要介绍了python实现经典排序算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • pytorch中model.train()和model.eval()用法及说明

    pytorch中model.train()和model.eval()用法及说明

    在PyTorch中,model.train()用于启用BatchNormalization和Dropout,保证模型在训练阶段能够有效地利用这些层的特性,而model.eval()则是用于测试阶段,确保BatchNormalization和Dropout不会影响测试结果,保持模型的稳定性
    2024-09-09
  • Python如何根据页码处理PDF文件的内容

    Python如何根据页码处理PDF文件的内容

    在Python中,fitz库可以用于多种任务,如打开PDF文件、遍历页面、添加注释、提取文本、旋转页面等,此外,它还可以用于在PDF页面上添加高亮注释、提取图像等操作,这篇文章主要介绍了Python根据页码处理PDF文件的内容,需要的朋友可以参考下
    2024-06-06

最新评论