Python Matplotlib绘制多子图详解
更新时间:2022年02月21日 10:22:09 作者:青石横刀策马
Matplotlib是Python中最受欢迎的数据可视化软件包之一,它是 Python常用的2D绘图库,同时它也提供了一部分3D绘图接口。本文将详细介绍如何通过Matplotlib绘制多子图,以及合并图例和调整子图间距,需要的可以参考一下
通过获取子图的label和线型来合并图例
注意添加label
#导入数据(读者可忽略) pre_lp=total_res#组合模型 true=diff1[-pre_day:]#真实值 pre_ph=results_data["yhat"]#prophet pre_lstm=reslut#lstm pre_ari=data_ari['data_pre']#arima #设置中文字体 rcParams['font.sans-serif'] = 'kaiti' # 生成一个时间序列 (读者可根据情况进行修改或删除) time =pd.to_datetime(np.arange(0,21), unit='D', origin=pd.Timestamp('2021-10-19')) #创建画布 fig=plt.figure(figsize=(20,16))#figsize为画布大小 # 1 ax1=fig.add_subplot(221) ax1.plot(time,pre_lp,color='#1bb9f6',marker='^',linestyle='-',label='1') # ax1.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax1.set_title('1',fontsize=15)#设置标题 ax1.set_xlabel('日期/天',fontsize=15)#设置横坐标名称 ax1.set_ylabel('感染人数/人',fontsize=15)#设置纵坐标名称 ax1.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))#设置横坐标刻度(读者可忽略) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)#设置横坐标刻度(读者可忽略) # 2 ax2=fig.add_subplot(222) ax2.plot(time,pre_ph,color='#739b06',marker='o',linestyle='-',label='2') # ax2.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax2.set_title('2',fontsize=15) ax2.set_xlabel('日期/天',fontsize=15) ax2.set_ylabel('感染人数/人',fontsize=15) ax2.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) # 3 ax3=fig.add_subplot(223) ax3.plot(time,pre_lstm,color='#38d9a9',marker='*',linestyle='-',label='3') # ax3.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax3.set_title('3',fontsize=15) ax3.set_xlabel('日期/天',fontsize=15) ax3.set_ylabel('感染人数/人',fontsize=15) ax3.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) # 4 ax4=fig.add_subplot(224) ax4.plot(time,pre_ari,color='#e666ff',marker='x',linestyle='-',label='4') ax4.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax4.set_title('4',fontsize=15) ax4.set_xlabel('日期/天',fontsize=15) ax4.set_ylabel('感染人数/人',fontsize=15) ax4.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) #初始化labels和线型数组 lines=[] labels=[] #通过循环获取线型和labels for ax in fig.axes: axLine, axLabel = ax.get_legend_handles_labels() lines.extend(axLine) labels.extend(axLabel) #设置图例和调整图例位置 fig.legend(lines, labels,loc='lower center', ncol=5,framealpha=False,fontsize=25)
结果如下图
这个时候我们再把原先代码里面的通过循环获取label和线型注释掉,代码如下
#导入数据(读者可忽略) pre_lp=total_res#组合模型 true=diff1[-pre_day:]#真实值 pre_ph=results_data["yhat"]#prophet pre_lstm=reslut#lstm pre_ari=data_ari['data_pre']#arima #设置中文字体 rcParams['font.sans-serif'] = 'kaiti' # 生成一个时间序列 (读者可根据情况进行修改或删除) time =pd.to_datetime(np.arange(0,21), unit='D', origin=pd.Timestamp('2021-10-19')) #创建画布 fig=plt.figure(figsize=(20,16))#figsize为画布大小 # 1 ax1=fig.add_subplot(221) ax1.plot(time,pre_lp,color='#1bb9f6',marker='^',linestyle='-',label='1') ax1.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax1.set_title('1',fontsize=15)#设置标题 ax1.set_xlabel('日期/天',fontsize=15)#设置横坐标名称 ax1.set_ylabel('感染人数/人',fontsize=15)#设置纵坐标名称 ax1.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))#设置横坐标刻度(读者可忽略) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)#设置横坐标刻度(读者可忽略) # 2 ax2=fig.add_subplot(222) ax2.plot(time,pre_ph,color='#739b06',marker='o',linestyle='-',label='2') ax2.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax2.set_title('2',fontsize=15) ax2.set_xlabel('日期/天',fontsize=15) ax2.set_ylabel('感染人数/人',fontsize=15) ax2.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) # 3 ax3=fig.add_subplot(223) ax3.plot(time,pre_lstm,color='#38d9a9',marker='*',linestyle='-',label='3') ax3.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax3.set_title('3',fontsize=15) ax3.set_xlabel('日期/天',fontsize=15) ax3.set_ylabel('感染人数/人',fontsize=15) ax3.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) # 4 ax4=fig.add_subplot(224) ax4.plot(time,pre_ari,color='#e666ff',marker='x',linestyle='-',label='4') ax4.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax4.set_title('4',fontsize=15) ax4.set_xlabel('日期/天',fontsize=15) ax4.set_ylabel('感染人数/人',fontsize=15) ax4.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) #初始化labels和线型数组 # lines=[] # labels=[] #通过循环获取线型和labels # for ax in fig.axes: # axLine, axLabel = ax.get_legend_handles_labels() # lines.extend(axLine) # labels.extend(axLabel) #设置图例和调整图例位置 fig.legend(lines, labels,loc='lower center', ncol=5,framealpha=False,fontsize=25)
结果如下图
调整子图间距
plt.subplots_adjust(wspace=0.4,hspace=0.4)
wspace为子图之间宽间距,hspace为子图之间高间距
对比图如下
设置了间距的图像
没有设置间距的图像
到此这篇关于Python Matplotlib绘制多子图详解的文章就介绍到这了,更多相关Python Matplotlib多子图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python新手学习过程记录之基础环境:环境变量、版本区分、虚拟环境
刚开始接触Python开发语言,可能就会遇到一些棘手的问题,比如电脑上不知不觉已经安装了多个python版本,python3.8/3.10/3.11,甚至一些软件中也集成有python解释器;那么我编写的python代码,到底是使用哪个解释器在执行?我通过pip包管理工具安装的依赖包到底在那个地方2024-05-05python3报错check_hostname requires server_hostname的解决
这篇文章主要介绍了python3报错check_hostname requires server_hostname的解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2023-12-12使用Jest 在 Visual Studio Code 中进行单元测试的流程分析
Jest是一个流行的JavaScript测试框架,它提供了简洁、灵活和强大的工具来编写和运行单元测试,今天通过本文给大家介绍使用Jest在Visual Studio Code中进行单元测试的流程分析,感兴趣的朋友跟随小编一起看看吧2023-07-07
最新评论