Python中的3D绘图命令总结

 更新时间:2022年02月22日 10:40:40   作者:车厘子@  
很多情况下,为了能够观察到数据之间的内部的关系,可以使用绘图来更好的显示规律。而Python的matplotlib库中有很多三维图表显示的命令,本文为大家做了一个总结,需要的可以参考一下

导语

很多情况下,为了能够观察到数据之间的内部的关系,可以使用绘图来更好的显示规律。

比如在下面的几张动图中,使用matplotlib中的三维显示命令,使得我们可以对于logistic回归网络的性能与相关参数有了更好的理解。

下面的动图显示了在训练网络时,不同的学习速率对于算法收敛之间的影响。

下面给出了绘制这些动态曲线的相关的python指令:

01 3D plot

1.基本语法

在安装matplotlib之后,自动安装有 mpl_toolkits.mplot3d。

#Importing Libraries
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
 
#3D Plotting
fig = plt.figure()
ax = plt.axes(projection="3d")
 
#Labeling
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')
 
plt.show()

2.Python Cmd

使用pythoncmd 插入相应的语句。

3.举例

(1) Ex1

#!/usr/local/bin/python
# -*- coding: gbk -*-
#******************************
# TEST2.PY                     -- by Dr. ZhuoQing 2020-11-16
#
# Note:
#******************************
 
from headm import *
from mpl_toolkits.mplot3d import axes3d
 
ax = plt.axes(projection='3d')
x = [1,2,3,4,5,6,7,8,9]
y = [2,3,4,6,7,8,9,5,1]
z = [5,6,2,4,8,6,5,6,1]
 
ax.plot3D(x,y,z)
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')
 
plt.show()
 
#------------------------------------------------------------
#        END OF FILE : TEST2.PY
#******************************

▲ 3D plot的演示

(2) Ex2

from mpl_toolkits.mplot3d import axes3d
 
ax = plt.axes(projection='3d')
 
angle = linspace(0, 2*pi*5, 400)
x = cos(angle)
y = sin(angle)
z = linspace(0, 5, 400)
 
ax.plot3D(x,y,z)
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')
 
plt.show()

▲ 3D绘制的例子

(3) Ex3

import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
 
mpl.rcParams['legend.fontsize'] = 10
 
fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax.legend()
 
plt.show()

02 绘制Scatter

利用和上面的相同的绘制命令,将原来的plot3D修改成为 scatter即可。

from mpl_toolkits.mplot3d import axes3d
 
ax = plt.axes(projection='3d')
 
angle = linspace(0, 2*pi*5, 40)
x = cos(angle)
y = sin(angle)
z = linspace(0, 5, 40)
 
ax.scatter(x,y,z, color='b')
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')
 
plt.show()

▲ Scatter 的例子

03 绘制3D Surface

(1) Ex1

▲ 3D surface例子

#!/usr/local/bin/python
# -*- coding: gbk -*-
#******************************
# TEST2.PY                     -- by Dr. ZhuoQing 2020-11-16
#
# Note:
#******************************
 
from headm import *
from mpl_toolkits.mplot3d import axes3d
 
ax = plt.axes(projection='3d')
 
x = arange(-5, 5, 0.1)
y = arange(-5, 5, 0.1)
x,y = meshgrid(x, y)
R = sqrt(x**2+y**2)
z = sin(R)
 
ax.plot_surface(x, y, z)
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')
 
plt.show()
 
#------------------------------------------------------------
#        END OF FILE : TEST2.PY
#******************************

▲ 3D 绘制Surface

▲ 绘制3D球表面

(2) 举例

'''
***********
3D surface (color map)
***********
Demonstrates plotting a 3D surface colored with the coolwarm color map.
The surface is made opaque by using antialiased=False.
Also demonstrates using the LinearLocator and custom formatting for the
z axis tick labels.
'''
 
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
 
fig = plt.figure()
ax = fig.gca(projection='3d')
 
# Make data.
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
 
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                       linewidth=0, antialiased=False)
 
# Customize the z axis.
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
 
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
 
plt.show()

▲ 彩色表面绘制

以上就是Python中的3D绘图命令总结的详细内容,更多关于Python 3D绘图的资料请关注脚本之家其它相关文章!

相关文章

  • Pytorch从0实现Transformer的实践

    Pytorch从0实现Transformer的实践

    本文主要介绍了Pytorch从0实现Transformer的实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • OpenCV Python实现拼图小游戏

    OpenCV Python实现拼图小游戏

    这篇文章主要为大家详细介绍了OpenCV Python实现拼图版小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03
  • Python Requests模拟登录实现图书馆座位自动预约

    Python Requests模拟登录实现图书馆座位自动预约

    这篇文章主要为大家详细介绍了Python Requests的模拟登录,Python实现图书馆座位自动预约,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • driver = webdriver.Chrome()报错问题及解决

    driver = webdriver.Chrome()报错问题及解决

    这篇文章主要介绍了driver = webdriver.Chrome()报错问题及解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • Python Excel处理库openpyxl使用详解

    Python Excel处理库openpyxl使用详解

    openpyxl是一个第三方库,可以处理xlsx格式的Excel文件。这篇文章主要介绍了Python Excel处理库openpyxl使用详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-05-05
  • django如何通过类视图使用装饰器

    django如何通过类视图使用装饰器

    这篇文章主要介绍了django如何设计装饰器过滤黑名单,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python 必须了解的5种高级特征

    Python 必须了解的5种高级特征

    Python 多好用不用多说,大家看看自己用的语言就知道了。但是 Python 隐藏的高级功能你都 get 了吗?本文中,作者列举了 Python 中五种略高级的特征以及它们的使用方法,快来一探究竟吧!
    2020-09-09
  • 超实用的 10 段 Python 案例

    超实用的 10 段 Python 案例

    Python是目前最流行的语言之一,它在数据科学、机器学习、web开发、脚本编写、自动化方面被许多人广泛使用。它的简单和易用性造就了它如此流行的原因。今天这篇文章就给大家分享 10 段超级有用的 Python 案例,需要的朋友可以参考一下
    2021-09-09
  • numpy中meshgrid和mgrid的区别和使用详解

    numpy中meshgrid和mgrid的区别和使用详解

    本文主要介绍了numpy中meshgrid和mgrid的区别和使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Python常见格式化字符串方法小结【百分号与format方法】

    Python常见格式化字符串方法小结【百分号与format方法】

    这篇文章主要介绍了Python常见格式化字符串方法,结合实例形式分析了百分号方法和format函数进行字符串格式化的具体使用技巧,需要的朋友可以参考下
    2016-09-09

最新评论